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Abstract

Kaluza-Klein theory proposed a unification of gravity and electromagnetism by dimension-
ally reducing the Einstein-Hilbert action with a fifth circular dimension. We take inspiration
from this and consider theories in ten and eleven dimensions, specifically Type IIA string
theory and M-theory, where we obtain effective four-dimensional theories by dimensionally
reducing the higher dimensional theories on Calabi-Yau- and G2-manifolds. We give examples
of constructions of both Calabi-Yau and G2-manifolds, particularly orbifold constructions. We
find that the resulting four-dimensional theory from M-theory reductions contains the standard
model gauge group within the resulting gauge symmetry, as well as predicting a number of
gauge fields and scalar fields.
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1 Introduction

In this project I shall be discussing Kaluza-Klein theory and it’s modern day developments in
string theory and M-theory. The theory concerns adding additional dimensions of space to an
existing theory of, say, gravity, and then ’dimensionally reducing’ these extra dimensions to obtain
a lower dimensional theory that models our universe. As we will see, simpler higher-dimensional
theories can provide unified theories of physics in lower dimensions. The reason for considering
string theory and M-theory reductions later on in this thesis is because they provide us with a more
general unified theory than the original Kaluza-Klein theory. A specific focus of this thesis is how
topological and geometrical information of the extra dimensions influences the resulting 4D theory
after dimensional reduction.

I will be assuming that the reader is comfortable with differential geometry, the basics of
topology, and Riemannian geometry, as well as general relativity, Lagrangian mechanics, and
classical field theory. Knowledge of group theory is also assumed for more common Lie groups
such as O(n),U(n).

In this section we shall take a look at the original Kaluza-Klein theory in Subsection 1.1, and
then in Subsection 1.2 we will introduce the required topological and geometric concepts for dealing
with higher dimensional theories.

1.1 Kaluza-Klein Theory

After Einstein published his theory of general relativity in 1915, Kaluza suggested to Einstein
in 1919 the idea of adding an additional dimensional to the Einstein-Hilbert action to achieve a
unification of gravity and electromagnetism. In 1926, Klein then suggested that the additional
dimension should be S1, which can result in quantized theories [15]. Almost all of the theories that
we will be considering have the Einstein-Hilbert term in their action, so it will be good for us to
consider dimensional reductions of this action to begin with.

Definition 1.1 (Einstein-Hilbert Action). We define the Einstein-Hilbert action, which results in the
Einstein Field Equations, as

S =
∫

M
dnx

√
−gR (1)

where g= det(gIJ) and R is the Ricci Scalar of the metric g [6]. Here, M is just some n-dimensional
manifold that we have not yet specified.

Notice that the dimension of the integral in Definition 1.1 is general, as well as the manifold
we’re integrating over. So, we can follow the idea of Kaluza & Klein, by going from a 5D
Einstein-Hilbert action with M =M4 ×S1 and make the Kaluza-Klein Ansatz 1 [20]:

1There are different versions of this Ansatz, most of which give very similar results.
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Definition 1.2 (Kaluza-Klein Ansatz). Let g̃IJ be a 5-dimensional metric over M =M4 ×S1. Then
we make the following ansatz, known as the Kaluza-Klein Ansatz:

g̃IJ = φ
− 1

3

(
gµν +φAµAν φAµ

φAν φ

)
(2)

where the I,J indices run from 0 to 4, referring to the whole space M =M4 ×S1, where µ and ν

run from 0 to 3, over just the Minkowski space. In all of our examples, the indices I,J will run over
the whole manifold while Greek indices run over just our Minkowski space. In this Ansatz we have
taken a Fourier expansion of the fields over the S1 coordinate, and have chosen the zero modes to
be the only contributing factor, i.e.

g̃IJ(x,y) = ∑
n

g̃IJn(x)einy/R (3)

but we omit all non-zero n. Instead of referring to the zero modes as gµν0,A0
µ ,φ0, we shall simply

omit the 0-index. Here x refers to the coordinates on the Minkowski space, y is the coordinate on
S1, and R is the radius of the S1 [20].

Note that this ansatz does not result in a loss of generality, as it’s simply a choice of parametri-
sation of the metric. Any object with a Tilde refers to an object in 5D, while the objects without a
Tilde refer to 4D objects - we will follow this convention of tildes representing higher-dimensional
objects throughout this thesis.

Lemma 1.1. Let our metric from Definition 1.2 have determinant g̃ = detg̃IJ . We can then write it
in terms of only 4D objects

g̃ = detgIJ (4)

= (φ− 1
3 )5(φdet(gµν)+φ

2det(AµAν)−φ
2det(AµAν)) (5)

= φ
− 2

3 g (6)

where g = detgµν is the determinant of the 4D metric on M4.

We are now in a position to begin the dimensional reduction of the Einstein-Hilbert action. In
the following theorem we will assume the 5D action, but it is not too difficult to generalise this.

Theorem 1.1 (Dimensional Reduction of 5D Einstein-Hilbert action). We have already used the
Kaluza-Klein Ansatz from Definition 1.2 to find the metric and it’s determinant in terms of 4D fields.
Now we want to take our 5D R and write it in terms of 4D fields also. Taking our expansion of the
Ricci scalar from Exercise 7.3 of [12], and putting a tilde on 5D quantities:

R̃ = R−2e−σ
∇

2eσ − 1
4

e2σ FµνFµν (7)
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where φ = e2σ , σ = 1
2 logφ . Evaluating the second term of this gives us

∇
2eσ = ∂µ∂

µeσ (8)

= (∂µ∂
µ

σ)eσ +(∂µσ∂
µ

σ)eσ (9)

⇒−2e−σ
∇

2eσ =−2(∂µ∂
µ

σ)−2(∂µσ∂
µ

σ) (10)

=−(∂µ∂
µ logφ)− 1

2
(∂µ logφ∂

µ logφ) (11)

=
−2φ∂µ∂ µφ +∂µφ∂ µφ

2φ 2 (12)

but as we choose to discard total derivatives in the Lagrangian, we rewrite the second term as a total
derivative and end up getting the term in [12] 2. Substituting all of this into the 5D Einstein-Hilbert
action gives us

S = 2πR
∫
M4

d4x
√
−g[R− 1

4
φFµνFµν +

3
2

∂µφ∂ µφ

φ 2 ] (13)

Notice here that we now have an Einstein-Hilbert term, a Maxwell term and a scalar field all in 4D.
This then looks like a theory of gravity and electromagnetism in 4D from just a 5D theory of gravity.

So beginning with a 5D theory of pure gravity, we have obtained unification of gravity and
electromagnetism, as well as obtaining a massless scalar field. This is sometimes referred to as
the ’Kaluza-Klein miracle’, and lays the foundation of this thesis. This idea by Kaluza & Klein to
unify two separate forces by suggesting that in higher dimensions they are one in the same is the
motivation behind string theory, and this is where we are headed in this project. If we can unify two
seemingly different forces with just the introduction of a single extra dimension, what will happen
when we add even more?

It is very important for us to note the resulting gauge symmetry of our 4D theories - for example,
a theory of a vector field would only be considered as electromagnetism if it had the corresponding
U(1) gauge symmetry. We shall show that the vector fields Aµ from the Kaluza-Klein ansatz have
a U(1) gauge symmetry in the following:

Theorem 1.2 (U(1) Gauge Symmetry of 4D Kaluza-Klein Reduction). The fields Aµ with field
strength Fµν = ∂µAν −∂νAµ in Equation (13) have a U(1) gauge symmetry.

Proof: If we let Aµ transform like a gauge field under a U(1) symmetry,

Aµ → Aµ +∂µα (14)

then we get:

FµνFµν →(∂µ(Aν +∂να)−∂ν(Aµ +∂µα))(∂ µ(Aν +∂
ν
α)−∂

ν(Aµ +∂
µ

α)) (15)

= (Fµν +∂µ∂να −∂ν∂µα)(Fµν +∂
µ

∂
ν
α −∂

ν
∂

µ
α) (16)

= FµνFµν (17)

by symmetry of the partial derivatives acting on α .
2We end up with a different coefficient to [12]
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If we were to achieve a reduction that looked like the standard model, then we would hope that
the corresponding gauge symmetry contains SU(3)×SU(2)×U(1) [2]. This will be an important
idea to note much later on in this thesis.

Something else that will be of importance to us is the ’consistency’ of our reductions. Reducing
a higher dimensional action to a lower dimension does not mean that we can fully trust the latter:

Theorem 1.3 (Consistent Reduction). Let Sn+k be an action in (n+k)-dimensions, and Sn an action
dimensionally reduced from Sn+k. If the equations of motion derived from Sn satisfy the equations
of motion derived from Sn+k, then we call Sn a consistent reduction [18].

This theorem essentially means that for us to trust that any ansatz we make in our reduction is
reliable, we require that the equations of motion in the lower-dimensional theory are essentially
’the same’ as the higher dimensional equations of motion. We have from [18] that the reduction in
Theorem 1.1 is consistent, and so we are able to treat this as a realistic physical theory.

Some additional examples of Kaluza-Klein reductions on S1 can be found in Appendix B. In
this appendix we consider some interesting results that we get in 4D from a 5D reduction without
checking that these reductions are ’consistent’. So while we get some intriguing theories, we could
never consider them as reliable physical theories.

In this introductory Subsection we have seen that a possible way to achieve a unified theory of
physics is by considering our fields in 4D as a unified field in higher-dimensional theories. Already
we have seen a unification of gravity and electromagnetism by considering just one extra spatial
dimension. This motivates us to consider string theory and M-theory, popular contenders of a
unified theory, which exist in 10- and 11-dimensional space. In the following chapters we will
introduce the more advanced 6D geometry that is used in 10D string theories and how reductions
work on them, and then we’ll introduce the 7D geometry used in 11D M-theory, and consider
the reduction of this theory. We hope that we shall see the resulting 4D theory contains greater
unification than the Kaluza-Klein theory.

1.2 Forms and Cohomology

To consider theories in higher dimensions, we will discuss some essential tools - exterior calculus of
differential forms, and cohomology. These will make it far easier for us to talk about the geometry
of these higher dimensions.

The first mathematical object we wish to define is that of a Differential Form. The reason for this
is that we will end up writing some very extensive equations later on, and a differential form allows
us to simplify many expressions. In the same way that the Einstein Summation Convention allows
us to implicitly sum over indices and reference entire tensors by assigning indices to individual
elements, a differential form allows us to go even further with condensing our notation. They also
end up being incredibly important objects in their own right when dealing with concepts such as
cohomology, which we cover in this Subsection.
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Definition 1.3 (Differential Form). A differential p-form is defined as totally antisymmetric tensor
of rank (0,p) [14].

This might seem like a very basic notion, but they end up having a very powerful physical
interpretation. Before we give an example of a differential form, it’s worth discussing notation for
tangent and cotangent spaces of manifolds. If we have a point q ∈ M, where M is a manifold, then
we write the tangent space at q as TqM, and the cotangent space as T ∗

q M. The bases of these spaces
are given by { ∂

∂xk }k∈I and {dxk}k∈I respectively, for index set I = {1, ...,n} for n-dimensional M.
Naturally, as T ∗

q M is a dual space to TqM, the inner product between the two is given by

< dxk,
∂

∂xl >= δ
k
l (18)

where we have borrowed the notation from [5]. However, for almost all of our discussions we will
rely on elements in T ∗

p M, i.e. the cotangent vectors.
Let’s now consider various dimensions of p-form. If we let p = 0, and take the definition of a

0-form from Definition 1.3, then we simply end up with an antisymmetric tensor of rank (0,0), i.e.
a scalar. What then do we mean by a 1-form? Well, this would be a tensor of rank (0,1), which we
could write as T k, i.e. a vector. Similarly, a 2-form can be written as T kl =−T lk.

Generally, we can pick the basis {dxk}k∈I for our 1-forms, and for p-forms we have the space
of (smooth) p-forms at point q ∈ M defined as [14]

Ω
p
q(M) = span{dxk1 ∧ ...∧dxkp},k1 < ... < kp (19)

where we define the wedge product as

dxk1 ∧ ...∧dxkp =
1
p!

εk1...kpdxk1 ⊗ ...⊗dxkp (20)

which is essentially the sum of the even permutations of the tensor products of the basis elements
minus the sum of the odd permutations (note the Einstein Summation Convention being used here)
[14].

If M is an n-dimensional manifold, then

dimΩ
p
q(M) =

n!
p!(n− p)!

(21)

which we have taken from [14].

Definition 1.4 (Differential Form p-form in coordinates). A general p-form F ∈ Ω
p
q(M) can be

written as
F = Fk1..kpdxk1 ∧ ...∧dxkp (22)

where Fk1..kp is anti-symmetric [5]. Some authors use a normalization constant of 1
p! , but we will

not include these in our definitions.
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Definition 1.5. Let F ∈ Ωp(M),G ∈ Ωq(M), then we have

F ∧G = Fk1..kpGl1..lqdxk1 ∧ ...∧dxkp ∧dxl1 ∧ ...∧dxlq = (−1)pqG∧F (23)

such that F ∧G ∈ Ωp+q(M) [5].

Now that we’ve gone over some essentials we can introduce an incredibly useful tool for
differential forms:

Definition 1.6 (Exterior Derivative). Define d : Ω
p
q(M)→ Ω

p+1
q (M) as the exterior derivative of a

p-form, such that

dF =
∂Fk1...kp

∂xl dxl ∧dxk1 ∧ ...∧dxkp (24)

which is obviously a (p+1)-form [14].

We can introduce an incredibly important and fundamental property of the exterior derivative
which, while simple, is core to the study of cohomology later on:

Lemma 1.2. If we take d2F by applying the exterior derivative twice on a p-form then we get [5]

d2 = 0 (25)

Proof:

d2F =
∂ 2Fk1..kp

∂xm∂xl dxm ∧dxl ∧dxk1 ∧ ...∧dxkp (26)

=−
∂ 2Fk1..kp

∂xm∂xl dxl ∧dxm ∧dxk1 ∧ ...∧dxkp (27)

=−
∂ 2Fk1..kp

∂xl∂xm dxl ∧dxm ∧dxk1 ∧ ...∧dxkp (28)

=−
∂ 2Fk1..kp

∂xm∂xl dxm ∧dxl ∧dxk1 ∧ ...∧dxkp (29)

=−d2F (30)

⇒ d2F = 0 (31)

so we see that for any differential form we have d2F = 0, and therefore d2 = 0.

Lemma 1.3. Let Fk1...kp be a symmetric tensor, then the form

F = Fk1...kpdxk1 ∧ ...∧dxkp = 0 (32)

Proof:

F = Fk1k2...kpdxk1 ∧dxk2 ...∧dxkp (33)

= Fk2k1...kpdxk1 ∧dxk2 ...∧dxkp (34)

=−Fk2k1...kpdxk2 ∧dxk1 ...∧dxkp (35)

=−F (36)

⇒ F = 0 (37)
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Definition 1.7 (Derivative of Wedge Products). Let F be a p-form, G be a q-form. Then [4]

d(F ∧G) = dF ∧G+(−1)pF ∧dG (38)

Definition 1.8 (Exact Forms). If a form can be written as

Fp = dGp−1 (39)

then we say it is exact [5].

Definition 1.9 (Closed Forms). If a form has that

dF = 0 (40)

then we say it is closed [5].

Lemma 1.4. If we have an exact form F, then it can be written as

F = dG ⇒ dF = d2G = 0 (41)

which means that every exact form is closed, by Lemma 1.2.

Now feels like an appropriate time to see some examples of exterior calculus and differential
forms. One that is quite useful is to simply apply exterior derivatives to 0-, 1-, and 2-forms in
Euclidean space R3, as well as looking at the Electromagnetic Tensor as a differential form:

Example 1.1 (Vector Calculus results via exterior calculus). We will follow a commonly used
example, from both [5], [14]. However, we will add an interesting extension towards the end.
Denote Vp as a p-form for p ∈ {0,1,2}. Then we can write:

V0 = f (x,y,z) (42)

V1 = fx(x,y,z)dx+ fy(x,y,z)dy+ fz(x,y,z)dz (43)

V2 = fxydx∧dy+ fyzdy∧dz+ fzxdz∧dx (44)

where f are 0-, 1-, or 2-dimensional maps in R3, depending on the value of p. Taking the exterior
derivatives of each of these

dV0 =
∂ f
∂x

dx+
∂ f
∂y

dy+
∂ f
∂ z

dz (45)

dV1 = (
∂ fy

∂x
− ∂ fx

∂y
)dx∧dy+(

∂ fz

∂y
−

∂ fy

∂ z
)dy∧dz+(

∂ fz

∂x
− ∂ fx

∂ z
)dz∧dx (46)

dV2 = (
∂ fyz

∂x
+

∂ fzx

∂y
+

∂ fxy

∂ z
)dx∧dy∧dz (47)

we see each application of exterior derivative corresponds to the vector calculus operators ∇V0,∇×
V1,∇ ·V2, depending on the dimension of Vp. This is example is displayed both in [14] and [5].
However, what these don’t show is how Lemma 1.2 gives us some results from multivariate calculus.
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For example, we have seen that dV0 ≡ ∇V0 is a 1-form. A standard result from multivariate calculus
that readers should be familiar with is that ∇×∇V0 = 0. Well, considering that dV0 ∈ Ω1(R3),
and that dV1 ≡ ∇×V1, we then have that d(dV0) = d2V0 = 0 ⇒ ∇× (∇V0) = 0. Similarly, we get
∇ · (∇×V1) = 0.

Example 1.2 (Electromagnetic Tensor). We begin by defining the Electromagnetic four-potential
simply as a 1-form A = Aνdxν . We then take the exterior derivative of this to get

dA =
∂Aν

∂xµ
dxµ ∧dxν (48)

= ∂µAνdxµ ∧dxν (49)

and now we can recognise that as µ,ν ∈ {0, ..,3}, we can fix µ < ν ,µ ̸= ν and split this into

dA = ∂µAνdxµ ∧dxν +∂µAνdxν ∧dxµ (50)

= ∂µAνdxµ ∧dxν −∂νAµdxµ ∧dxν (51)

= (∂µAν −∂νAµ)dxµ ∧dxν (52)

⇒ F = dA = Fµνdxµ ∧dxν (53)

where Fµν = (∂µAν − ∂νAµ) as we would expect for the Electromagnetic Tensor. We know by
d2 = 0 that dF = 0, which gives us one of Maxwell’s Equations.

Now that we’ve seen some basic examples, we would like to extend our understanding of the
relationship between forms of different dimensions. So far we’ve seen the relationship between a
p-form and a (p+1)-form is through the exterior derivative, but a more extensive relationship can be
found through the Hodge Star.

Definition 1.10 (Hodge Star Operator). Let F ∈ Ω
p
q(M) be a p-form at point q ∈ M for smooth

Riemannian manifold (M,g) of dimension n. Then we can define the Hodge Star Operator as
⋆ : Ω

p
q(M)→ Ω

(n−p)
q (M) such that [14]

⋆F = g1/2Fk1...kpε
k1...kp
lp+1...lndxlp+1 ∧ ...∧dxln (54)

where g1/2 is the root of the determinant of the metric of M. As we can see, this is an (n-p)-form,
thus giving us a relationship between the two dimensions of forms.

Lemma 1.5. We can apply the Hodge star twice to a p-form to arrive back in the space Ω
p
q(M),

with the result for Riemannian (M,g) being [14]

⋆⋆F = (−1)p(n−p)F (55)

The proof of this Lemma 1.5 can be found in [14], but we won’t include it here as it’s not
particularly relevant, as well as being quite index-heavy.
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Definition 1.11 (Exterior Product of forms). The exterior product of two p-forms is given by

F ∧⋆G = g
1
2 Fk1...kpGk1...kpdx1 ∧ ...∧dxn (56)

which is evidently an n-form and symmetric [14].

Definition 1.12 (Inner Product of forms). From the exterior product we can define the inner product
on the space Ω

p
q(M) as [5]

< F,G >=
∫

F ∧⋆G (57)

=
∫

M
g

1
2 Fk1...kpGk1...kpdx1...dxn (58)

Notice here that when we write our dxk terms in an integral, we actually mean this to be wedge
products, but these are usually omitted. Note that this is also symmetric.

Definition 1.13 (Intersection Numbers). We can define a topological invariant of an n-dimensional
manifold M, called the intersection numbers:

κi1..ik =
∫

M
ωi1 ∧ ..∧ωik (59)

where ωi1 , ...,ωik are a basis of p-forms such that k× p = n. We have examples of the intersection
numbers of just two forms given in [5] and for a triplet of 2-forms on a 6-dimensional manifold
in [2]. Here we give a general definition. We will also allow a combination of forms of different
dimension to define intersection numbers.

Theorem 1.4 (Stokes’ Theorem for Forms). Given an n-dimensional manifold M with (n-1)-
dimensional boundary ∂M, and an (n-1)-form A on M, then Stokes’ Theorem states [5]∫

M
dA =

∫
∂M

A (60)

Note that we can have the same for a p-dimensional submanifold of M and a (p-1)-form on M.

For more discussion about boundaries of manifolds, see Appendix A. Here we also give physical
meaning to differential forms.

Corollary 1.1 (Integration on manifolds without boundary). Let M be an n-dimensional manifold
with no boundary, and let A be an (n-1)-form. Then from Theorem 1.4 we have∫

M
dA = 0 (61)

This is a way of saying that total derivatives on forms without boundary vanish.

We are nearly at a point where we can move onto discussing cohomology, but first we need to
introduce the concept of the Laplacian operator:
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Definition 1.14 (Adjoint Exterior Derivative). Let the Adjoint Exterior Derivative d† be given by
d† : Ω

p
q(M)→ Ω

p−1
q (M) for n-dimensional M such that [14]

d†F = (−1)np+n+1 ⋆d ⋆F (62)

where it can be shown that (d†)2 = 0 and < Fp,dGp−1 >=< d†Fp,Gp−1 >. Similarly to the
definition of a closed form, we have that a form is co-closed if d†F = 0 [5].

Definition 1.15 (Laplacian Operator). We define the Laplacian, or the de Rham Operator, as
△ : Ω

p
q(M)→ Ω

p
q(M) such that [5]

△= dd† +d†d (63)

Definition 1.16 (Harmonic Forms). We call a p-form F a Harmonic Form if

△F = 0 (64)

where F is Harmonic ⇐⇒ dF = 0 and d†F = 0 (i.e. F is both closed and co-closed) [5].

Something we’ll need for Chapters 3 and 4 is the action of the exterior derivative and Hodge
star on product manifolds. This will be very important for us in Sections 3 and 4, where we will
be considering product manifolds extensively via the product of our 4D Minkowski space and the
manifolds we have representing our extra dimensions.

Lemma 1.6 (Exterior Derivative on Product Manifolds). Let M = M1×M2, with exterior derivative
d. The manifolds M1,M2 each have their own exterior derivative d1,d2. Let F1,F2 be forms on
M1,M2 respectively, where F1 is a p-form. Then using Definition 1.7 we get

d(F1 ∧F2) = (d1F1)∧F2 +(−1)pF1 ∧d2F2 (65)

i.e. the exterior derivative on the product manifold acts linearly on each manifold. This is because
if F1 depends on only coordinates on M1, then the action of d2 on F1 vanishes, and the same for F2.

Lemma 1.7 (Hodge Star on Product Manifolds). Let us have the same product manifold and forms
as Lemma 1.6. Then the Hodge star on the product manifold acts as [13]

⋆(F1 ∧F2) = (−1)p(n−p) ⋆1 (F1)∧⋆2(F2) (66)

where F1 is a p-form and F2 is a (n-p)-form, dim(F1 ∧F2) = n. Here, ⋆1,⋆2 are the Hodge star
operators on M1,M2 respectively.

Lemma 1.8. We can write the Einstein-Hilbert action in the form

S =
∫

M
R ⋆1 (67)

10



Proof: Remembering Definition 1.10, and writing the trivial 0-form 1 as some constant function
A = 1, we get that

⋆1 = ⋆A =
√
−gAεl1...lndxl1 ∧ ...∧dxln (68)

= n!
√
−gdx1 ∧ ...∧dxn (69)

∼
√
−gdnx (70)

So from this result we can substitute Equation (70) into Equation (67) to recover the form of the
action in Definition 1.1.

For the rest of this thesis we will write the Einstein-Hilbert action like in Lemma 1.8.
Now that we’ve defined the Laplacian and Harmonic Forms, we can move onto the study of

cohomology, which helps us set up important topological properties of our manifolds. Cohomology
concerns itself with the number of non-trivial harmonic differential forms on a manifold 3.

Definition 1.17 (de Rham Cohomology). Let Cp = {F p|dF p = 0} be the set of closed p-forms
on M, and Bp = {Gp|Gp = dAp−1} be the set of exact p-forms such that for Gp ∈ Bp we have
dGp = d2Ap−1 = 0. Then we define the de Rham Cohomology of M to be [5]

Hp = Cp/Bp (71)

which is again just the quotient set of closed forms and trivially closed (i.e. exact) forms. For two
forms in Hp that differ by an exact form we identify them: [5]

F p ∼ F p +dAp−1 (72)

Definition 1.18 (Betti Numbers). Let manifold M have cohomology Hp. Then we define the Betti
numbers as

bp = dimHp (73)

which is a topological invariant of M [5].

Theorem 1.5 (Euler Characteristic). Given a manifold M with Betti numbers bp, we can write it’s
Euler Characteristic as [5]

χ(M) =
n

∑
p=0

(−1)pbp (74)

Definition 1.19 (Künneth Formula). Let M = M1 ×M2 be a product manifold. Then the Künneth
Formula calculates the Betti numbers of M from the Betti numbers of M1 M2: [5]

bk(M) = ∑
p+q=k

bp(M1)bq(M2) (75)

3Rather, de Rham Cohomology concerns itself with differential forms - there are many types of cohomology that
consider different objects which are not necessarily equivalent to de Rham cohomology.
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Theorem 1.6 (Harmonic Forms in Cohomology). A cohomology class (i.e. set of closed forms in a
cohomology group that differ by an exact form) contains exactly one Harmonic form [5]. This then
means that the cohomology group is spanned by the set of harmonic forms of each cohomology
class in the group. Therefore the Betti number bp = dimH p(M) counts the number of harmonic
forms in the cohomology group [5]. The proof of this can be found in [5], but it’s not particularly
important for the rest of this thesis so we won’t include it here.
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2 Calabi-Yau Manifolds

In Subsection 1.1 we saw that taking a higher-dimensional theory and dimensionally reducing the
extra dimensions beyond the four-dimensional universe that we experience gives us a richer theory
than we began with. So far we’ve only given our space a single extra dimension S1, but we’d like to
see how much further we can go.

Berger’s List tells us about what the holonomy of particular manifolds in a given dimension
must be. We are interested in the 6- and 7-dimensional cases, so we will discuss these. The list
classifies simply-connected manifolds (that are not locally a product manifold or locally symmetric)
by their holonomy group hol(g). The original list that Berger gave was incomplete, so from [10] we
have that:

• For 2n-dimensional (M,g) with hol(g)⊆U(n), (M,g) is Kähler

• For 2n-dimensional (M,g) with hol(g)⊆ SU(n), (M,g) is Calabi-Yau

• For 7-dimensional (M,g) with hol(g)⊆ G2 we call M a G2-manifold

In the former cases we choose n=3 to get 6-dimensional Kähler and Calabi-Yau manifolds. Clearly
all Calabi-Yau manifolds are also Kähler, and from [10] we have that a Kähler manifold is Calabi-
Yau iff it is also Ricci-flat. This list is important for us as the extra 6 dimensions of string theory
are thus required to be Calabi-Yau and the extra 7 dimensions of M-theory are required to be G2-
manifolds. Manifolds in Berger’s List are sometimes referred to as Special Holonomy Manifolds,
and they play a key role in this thesis.

It’s a well known fact even outside of physics literature that string theory predicts that the
universe has an additional 6 or 7 dimensions that are so small that we cannot detect them. This
could be exciting to us as we’re looking at unification from extra dimensions, and string theory is
thought to be able to combine all of the forces of nature into one single theory. So, the questions
we want to ask are what do these dimensions look like, and what do the resulting 4D theories look
like after dimensional reduction? To answer the first question, we must first introduce Calabi-Yau
manifolds to consider an extra 6 dimensional space, and if we want to consider a 7-dimensional
space then we must study G2 manifolds, which we introduce in Section 4. For the second question,
we approach the answer in Sections 3 and 4 for Calabi-Yau and G2 manifolds respectively. The
hope is that a reduction of these theories will give us something that looks like a unified theory of
physics in 4D, with the ultimate goal being a unification of gravity with the standard model. These
questions are the driving motivation for this thesis.

Much of the introductory content for this section shall be taken from [5] and [14], as well
as drawing from [4]. I shall do my best to highlight important aspects and give a more verbose
explanation of the more important concepts required for this thesis.
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2.1 Complex, Hermitian and Kähler Manifolds

Before defining a Calabi-Yau manifold, we must first introduce various definitions and notions
that we have not yet covered. A Calabi-Yau is a complex manifold with certain properties, and so
firstly we should define precisely what we mean by a complex manifold. We will simply copy the
definition from [4], as it is very similar to the definition of a real manifold.

Definition 2.1 (Complex Manifold). Let M be a 2n-dimensional real manifold with open covering
{Ui}. Similarly to a real manifold, we define a coordinate chart (Ui,ψi) where ψi : Ui → Cn

is an homeomorphism from from Ui to an open subset of Cn. We say that (M,{Ui,ψi}) is a
complex manifold of complex dimension n if the transition functions ψi j = ψ j ◦ψ

−1
i : ψi(Ui

⋂
U j)→

ψ j(Ui
⋂

U j) are all holomorphic functions. What this means is that M is a complex manifold if
locally it looks like Cn [4].

Now that we’ve introduced a complex manifold in this way, we notice that this is an incredibly
similar definition to how a real manifold is defined, just with complex spaces and holomorphic
functions instead of real spaces and differentiable functions. We shall usually just assume that a
manifold is complex throughout the thesis (where appropriate) as opposed to showing it directly as
we wish to avoid proofs that require in-depth real or complex analysis in this thesis, as they can
become too advanced for what we wish to cover here.

Given local coordinates zµ ,zµ̄ on a complex manifold M corresponding to holomorphic and anti-
holomorphic coordinates, where zµ̄ = z̄µ , we can split the basis of tangent vectors into { ∂

∂ zµ },{ ∂

∂ zµ̄ }
corresponding to the tangent spaces TpM+ and TpM− respectfully [14]. These combine to give
TpM = TpM+⊗TpM−. We have the same for cotangent vectors and the cotangent spaces, with two
bases {dzµ},{dzµ̄}, such that T ∗

p M is spanned by {dzµ ,dzµ̄}. The basis of the cotangent space is
what we will use to construct complex differential forms, which we will come to soon.

We continue by introducing the almost complex structure of a (real or complex) manifold,
which shall contribute extensively, yet subtly, to this thesis. Essentially, it is just a tensor in local
coordinates that squares to the minus Identity matrix.

Definition 2.2 (Almost complex structure (ACS) ). We can define the almost complex structure on
a 2n-dimensional manifold M as follows: [5]

Jn
m = idzµ ⊗ ∂

∂ zµ
− idzµ̄ ⊗ ∂

∂ zµ̄
(76)

where we have that m,n can be ’holomorphic’ or ’anti-holomorphic’ indices, i.e., µ or µ̄ respectfully.
For example [5]

J ν
µ = iδ ν

µ , J ν̄
µ̄ =−iδ ν̄

µ̄ , J ν̄
µ = 0 (77)

To see why we get these, we consider how the different choices of m,n would arise in Equation (76).
We can then write J in matrix form as

J =

(
iIn 0
0 −iIn

)
(78)
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where In is the n dimensional identity matrix. Thus, squaring J we get [14]

J2 =−I2n (79)

or in index notation [5]
J i

k J m
i =−δ

m
k (80)

Note that every 2n-dimensional manifold admits an almost complex structure locally, but only on
complex manifolds is it defined globally [14].

Lemma 2.1 (ACS is real). While J is written in terms of complex coordinates and contains
imaginary numbers, it actually turns out to be real [5]

J̄ =−idzµ̄ ⊗ ∂

∂ zµ̄
+ idzµ ⊗ ∂

∂ zµ
= J (81)

Definition 2.3 (Hermitian Manifold). If M is a complex manifold that admits a metric of the form

ds2 = gµν̄dzµdzν̄ (82)

then we say that M is an Hermitian manifold. Note that a complex manifold always admits an
Hermitian metric, so when we say that M is Hermitian, we actually mean that the pair (M,g) is
Hermitian, where g is of the form given above [5]. Note that by this definition the metric for an
Hermitian manifold has [5]

gµν = gµ̄ ν̄ = 0 (83)

Lemma 2.2. Let M be an Hermitian manifold. Then the metric satisfies [5]

gi j = J m
i J n

j gmn (84)

This is essentially just contraction of indices to write the metric in terms of the ACS.

Theorem 2.1 (ACS as a 2-form). Let M be an Hermitian manifold. Then the ACS is a 2-form: [5]

Jmn =−Jnm (85)

Proof: The proof of this is given in [5], but not in very much detail, so we shall be more explicit.
Writing our metric in the form given in Lemma 2.2 and multiplying by J i

k we get

J i
k gi j = J i

k J m
i J n

j gnm (86)

where we swapped the indices of the metric on the RHS. Now we can contract indices with the
metric on both sides and using the identity that J2 =−I on the right hand side to get

Jk j =−δ
m

k J n
j gnm (87)

⇒ Jk j =−J jk (88)

which, as J is a tensor, means that for an Hermitian manifold the ACS defines a 2-form [5].
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Note that we have not yet distinguished how forms differ on complex manifolds to those on real
manifolds. We can now split the forms up into holomorphic and anti-holomorphic components but
as these components form a basis, complex forms behave in a similar way to real forms. Complex
forms are explained in [14] better than [5] as it goes into more depth and states things more
explicitly, so we’ll follow their argument for this discussion.

Definition 2.4 (Complex Forms). Given a r-form F on a complex manifold that consists of p
holomorphic cotangent vectors and q anti-holomorphic cotangent vectors such that p+q = r, we
can write F as [14]

F = Fµ1..µpν̄1..ν̄qdzµ1 ∧ ..∧dzµp ∧dzν̄1 ∧ ..∧dzν̄q (89)

with F ∈ Ω(p,q)(M), and will refer to F as a (p,q)-form.

We can write the ACS in a way that will prove incredibly useful for us later on. This form is
used in [5] without being explicitly stated or proved, so we will prove it ourselves.

Lemma 2.3 (Rewriting J as a form). Now that we’ve seen that J is a 2-form, we shall write it as a
(1,1)-form: [14]

J = Jµν̄dzµ ∧dzν̄ (90)

where
Jµν̄ = igµν̄ (91)

Proof: We can use the identity
J λ

µ = iδ λ
µ (92)

from Equation (77) and by right-multiplication of gλ ν̄ we get

J λ
µ gλ ν̄ = iδ λ

µ gλ ν̄ (93)

which by contraction of indices gives us

Jµν̄ = igµν̄ (94)

This Lemma essentially allows us to consider the metric as a form - by multiplying an Hermitian
metric by i and then taking the complex conjugate we have essentially asymmetrized the metric,
and thus get a differential form.

Before introducing the incredibly important definition of Kähler manifolds, we should introduce
something called the Dolbeault operators which act on complex forms. They are a way of writing the
exterior derivative of a complex form in terms of holomorphic and anti-holomorphic coordinates:

Definition 2.5 (Dolbeault operators). We define the Dolbeault operators and their action on a
complex form F as [14]

d = ∂ + ∂̄ (95)
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such that

∂F =
∂Fµ1..µpν̄1..ν̄q

∂ zλ
dzλ ∧dzµ1 ∧ ..∧dzµp ∧dzν̄1 ∧ ..∧dzν̄q (96)

and

∂̄F = (−1)p ∂Fµ1..µpν̄1..ν̄q

∂ zλ̄
dzµ1 ∧ ..∧dzµp ∧dzλ̄ ∧dzν̄1 ∧ ..∧dzν̄q (97)

We then have that ∂F ∈ Ω(p+1,q)(M) and ∂̄F ∈ Ω(p,q+1). These Dolbeault operators individually
act like the exterior derivative does with regard to any aforementioned properties.

Thinking back to de Rham cohomology from Subsection 1.2, how should we think about the
cohomology of a complex form with respect to these new operators? Well, we can introduce a new
type of cohomology called Dolbeault cohomology:

Definition 2.6 (Dolbeault Cohomology). We define the ∂ - and ∂̄ -cohomology groups similarly to
the de Rham cohomology groups: [4]

H(p,q)
∂

= C(p,q)
∂

/B(p,q)
∂

(98)

and similarly for the ∂̄ -cohomology group, where

C∂ = {F ∈ Ω
(p,q)(M)|∂F = 0} (99)

B∂ = {F ∈ Ω
(p,q)(M)|F = ∂A} (100)

with similar definitions for ∂̄ .

Theorem 2.2 (Dolbeault Cohomology ∼= de Rham Cohomology). We have that [5]

∂∂
† +∂

†
∂ = ∂̄ ∂̄

† + ∂̄
†
∂̄ =

1
2
(dd† +d†d) (101)

so therefore Dolbeault Cohomology and de Rham Cohomology are equivalent. This is because if a
form in de Rham cohomology vanishes under the Laplacian, then it will for both the ∂ Laplacian
and the ∂̄ Laplacian.

Definition 2.7 (Hodge Diamond). The Hodge numbers of a complex manifold are defined in a very
similar way to the Betti numbers were in Definition 1.18. The (p,q)-th Hodge number is given by:
[4]

bpq = dimH(p,q)
∂̄

(102)

= dimH(p,q)
∂

(103)

They are usually arranged into what we call a Hodge Diamond; for the 3-complex-dimensional
case we get [4] 

b00

b10 b01

b20 b11 b02

b30 b21 b12 b03

b31 b22 b13

b32 b23

b33


(104)
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Lemma 2.4 (Betti Numbers of Complex Manifold). Given the Hodge numbers bpq of a complex
manifold M, we can obtain it’s Betti numbers in a simple way: [14]

bk(M) = ∑
k=p+q

bpq (105)

That is, the k-th Betti number is just the sum of the k-th row of the Hodge diamond. This makes
sense, as the Hodge numbers were obtained by finding harmonic forms with respect to the Dolbeault
operators, which were just a way of decomposing the exterior derivative.

With these new tools, we can define a Kähler manifold, which takes us one step closer to
defining a Calabi-Yau manifold. As we will see later, Calabi-Yau manifolds are just Ricci-flat
Kähler manifolds, so studying Kähler geometry is of crucial importance to us. Our definition of
Kähler manifolds comes directly from [5].

Definition 2.8 (Kähler Manifold). Let M be an Hermitian manifold with almost complex structure
J. We call M a Kähler manifold if

dJ = 0 (106)

where we now refer to J as the Kähler form [5]. Using Dolbeault operators, we require [5]

dJ = (∂ + ∂̄ )J (107)

= i
∂gµν̄

∂ zλ
dzλ ∧dzµ ∧dzν̄ − i

∂gµν̄

∂ zλ̄
dzµ ∧dzλ̄ ∧dzν̄ = 0 (108)

which means that
∂gµν̄

∂ zλ
=

∂gµν̄

∂ zλ̄
= 0 (109)

vanish separately, as ∂J, ∂̄J exist in separate spaces: the space of (2,1)-forms and (1,2)-forms,
respectively.

Lemma 2.5 (Kähler form is not exact). Assume that M is a compact Kähler manifold without
boundary. We have that the volume form is proportional to J∧ ...∧ J [5], so if we assume that J is
exact, i.e., J = dA, then we have [5]

Vol(M) =
∫

J∧ ...∧ J (110)

=
∫

M
dA∧ ...∧ J (111)

=
∫

M
d(A∧ J∧ ...∧ J)−A∧d(J∧ ...∧ J) (112)

=
∫

∂M
A∧ J∧ ...∧ J = 0 (113)

where we have used Lemma 1.7 and the fact that J is closed in Equation (112), and Theorem 1.4 in
Equation (113). However, obviously M cannot have null volume, therefore J is not exact. If M did
have a boundary, then this integral would not necessarily vanish, so therefore b10 = b01 = 0 for
Kähler manifolds (see Appendix A for an explanation of this).
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Theorem 2.3 (J is Harmonic). We defined harmonic forms to be those that are both closed and
co-closed. It can be shown that the Kähler form J is not just closed, but also co-closed [5], and
from Lemma 2.5 we have shown that it is not exact. Therefore J is a harmonic form. Therefore
b11 ≥ 1 for a Kähler manifold.

We would like to introduce the Ricci form, a form associated to the Riemann Tensor of the
manifold. This is not a form that we actually pay much attention to, as the manifolds that we are
considering are usually Ricci-flat. Thus we introduce the form in hopes of showing that it vanishes
(or is exact) in most cases.

Definition 2.9 (Ricci Form). Let (M,g) be a Kähler manifold with Ricci Tensor Rmn corresponding
to the metric g. Then we define the Ricci Form as [5]

R(g) = iRµν̄dzµ ∧dzν̄ (114)

which is a (1,1)-form. For Kähler manifolds we obtain the Ricci Tensor in the same way as would
for a manifold with Levi-Civita connection [5], but for general Hermitian manifolds we would need
to introduce the more general Hermitian connection and be more careful with how we compute the
connection coefficients [14].

We will not introduce the Hermitian connection here as we will only be considering examples
of Kähler manifolds and thus will be assuming that our connection is Levi-Civita. Thankfully, the
following theorem simplifies the calculation of the Ricci Form for Hermitian manifolds so that we
would not have to worry about dealing with the Hermitian connection.

Theorem 2.4 (Ricci Form of an Hermitian Manifold). A convenient form of the Ricci form for a
Hermitian manifold (M,g) in terms of the Dolbeault operators is [5]

R(g) = i∂ ∂̄ log(g
1
2 ) (115)

where g is the determinant of the Hermitian metric. Naturally, we can also write the Ricci Form of
a Kähler manifold in this way.

We introduce a cohomology class known as the First Chern Class as it will be important in dis-
cussing Ricci-Flat Kähler manifolds (Calabi-Yau manifolds). Our definition combines information
from both [5] and [14].

Definition 2.10 (First Chern Class). Let M be a Kähler manifold that admits a metric g with
corresponding Ricci form R(g). Then we define a cohomology class of M, known as the First Chern
Class c1(M), as

c1 = [R(g)] (116)

such that for another Ricci form R(h) ∈ c1(M) we have

R(g)∼ R(h)+dA (117)

where dA is an exact form [5]. That is, the first Chern class of a Kähler manifold (M,g) is the
cohomology group of Ricci forms on M that differ by an exact form [14].
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We have really only scratched the surface of Chern classes here - further discussion can be
found in [4]. However, when dealing with Calabi-Yau manifolds we will only really be interested
in the First Chern Class.

Definition 2.11 (Ricci-Flat Metric). Let (M,g) be a Kähler manifold with Ricci Form R(g). If

R(g) = 0 (118)

i.e. the form vanishes, then we say that g is a Ricci-flat metric [14].

2.2 Defining a Calabi-Yau

So far we have studied complex geometry up to the point of considering Kähler manifolds, i.e. a
complex manifold with a closed ACS that admits an Hermitian metric. The purpose for introducing
the Kähler manifold is because Calabi-Yau’s are a special case of these, satisfying many different
but equivalent definitions.

Our reason for studying Calabi-Yau manifolds is that they are the suitable candidate for the extra
dimensions of a ten-dimensional string theory, and so to extend our original Kaluza-Klein theory to
compactifications of string theories it is necessary to become very familiar with Calabi-Yau’s.

Definition 2.12 (Calabi-Yau Manifold). Let (M,g) be a compact Kähler manifold. If g is a Ricci-flat
metric, then M is a Calabi-Yau manifold [4].

The question ’does a Kähler manifold with vanishing first Chern class admit a Ricci-flat metric?’
is a very difficult problem to prove. The affirmative was conjectured by Calabi, known as the Calabi
Conjecture, and was proved by Yau’s Theorem [4]. We won’t cover this theorem’s proof, important
as it is, but we can show the converse; This proof is shown in [5] but it is an interesting proof so we
shall include it here.

Theorem 2.5. Let M be a Kähler manifold admitting a Ricci-flat metric g: R(g) = 0. Then the
manifold M has vanishing first Chern class:

c1 = 0 (119)

Proof: Recalling Definition 2.10, we can define c1(M) = [R(g)]. As this is a cohomology class, two
elements R(g),R(h) ∈ c1 are related by

R(h)∼ R(g)+dA (120)

but we have said that g has R(g) = 0, so we get that

R(h) = dA (121)

and as this form is then exact, we get that c1 is a trivial class, i.e. c1 = 0 [5]. What we mean by
this is that every Ricci form in c1(M) is exact, and so the cohomology class is empty by recalling
Definition 1.17.

20



Theorem 2.6. An n-complex-dimensional Kähler M is a Calabi-Yau iff it admits a unique holomor-
phic (n,0)-form that is globally defined and does not vanish anywhere [4]. We can write this form
as [5]

Ω = Ωµ1...µndzµ1 ∧ ...∧dzµn (122)

Proof: A sketch of this proof is given in [5], which we shall include here as it allows us to see why
Theorem 2.4 is so powerful. If we find the norm of this form:

|Ω|2 = Ωµ1..µnΩ̄
µ1..µn (123)

where we set
Ωµ1..µn = f (z)εµ1..µn (124)

Ω̄
µ1..µn = f̄ (z)εν̄1..ν̄ngµ1ν̄1 ..gµnν̄n (125)

= f̄ (z)g−
1
2 ε

µ1..µn (126)

which then gives us

|Ω|2 = g−
1
2 | f |2 (127)

⇒ g
1
2 =

| f |2

|Ω|2
(z) (128)

where g
1
2 is now a coordinate scalar. Then, using Theorem 2.4, we get

R = i∂ ∂̄ log
| f |2

|Ω|2
(z) (129)

where we’ve thus shown that R is exact and thus c1 = 0 from Theorem 2.5. This is because if there
exists R = dA ∈ c1(M) then there must also exist a Ricci flat R(g). Therefore the existence of the
(n,0)-form defined above gives us an equivalent definition of a Calabi-Yau manifold.

Next we can discuss the cohomology of Calabi-Yau manifolds, as this is quite revealing about
the nature of individual examples. For this discussion we’ll only consider Calabi-Yau manifolds of
complex dimension 3 (real dimension 6), as these are the ones of interest to us later in the string
theory reductions that we will consider.

Theorem 2.7 (Hodge Diamond of a Calabi-Yau). Let M be a Calabi-Yau manifold of complex
dimension 3. Then we know from Theorem 2.6 that it admits a holomorphic (3,0)-form, as well as a
Kähler (1,1)-form. The Hodge numbers have the Hodge duality [4]

bpq = b(n−p),(n−q) (130)

which is due to the unique mapping of the Hodge star. We can also complex conjugate a complex
form uniquely such that

bpq = bqp (131)
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There’s also the holomorphic duality: [5]

b0q = b0,(n−q) (132)

The consequences of this for the Hodge diamond is that we get a vertical and horizontal symmetry,
i.e. 

b00

b10 b01

b20 b11 b02

b30 b21 b12 b03

b31 b22 b31

b32 b23

b33


(133)

becomes 

b00

b10 b10

b10 b11 b10

b30 b21 b21 b30

b10 b11 b10

b10 b10

b00


(134)

As b00 just counts the number of connected components of the manifold due to counting the number
of independent scalars on the manifold, we have that b00 = 1. From Lemma 2.5 we have also that
b10 = 0, as well as b30 = 1 due to the holomorphic (3,0)-form being unique. So finally we have the
diamond 

1
0 0

0 b11 0
1 b21 b21 1

0 b11 0
0 0
1


(135)

which means that for a Calabi-Yau of complex dimension 3 we have it’s topology being determined
by just two numbers, b11 and b21. Bear in mind that we have already showed that every Calabi-Yau
has b11 ≥ 1 due to the existence of at least one Kähler form that corresponds to a Ricci-flat metric.
Thus, b11 counts the number of Ricci-flat metrics on the Calabi-Yau. Note that this form of the
Hodge Diamond is only valid for Calabi-Yau manifolds that are simply connected [2]. We will see
an example of a non-simply connected Calabi-Yau and consider it’s Hodge numbers in Example
2.1.
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Corollary 2.1 (Euler Characteristic of Calabi-Yau Manifolds). The Euler Characteristic of simply-
connected Calabi-Yau M, χ(M), takes the value [4]

χ(M) = 2(b11 −b21) (136)

Proof: Recall Theorem 1.5, and Lemma 2.4 such that we get

χ(M) = 2b0 −2b1 +2b2 −b3 (137)

= 2(1)−2(0+0)+2(0+b11 +0)− (1+b21 +b21 +1) (138)

= 2(b11 −b21) (139)

where in Equation (138) we used (135).

2.3 Examples of Calabi-Yau manifolds

When trying to construct examples of Calabi-Yau manifolds, there is an issue - trying to write the
metrics explicitly is not possible in many cases. Even Yau’s theorem, which proved the Calabi-Yau
conjecture, is just an existence theorem as opposed to providing the actual metric. The examples
which we’ll consider in this subsection are chosen so that they’re simple enough to be able to
consider their metrics explicitly.

A very useful example of Calabi-Yau manifolds which are often used in string theory are
constructed via orbifolds. We can define a complex orbifold in a very simple way, and then we can
give some examples and show whether or not they are Calabi-Yau manifolds. [14] gives the most
simple definition, but [10] and [2] give more comprehensive details which we will use a lot for
our discussion. Firstly, we will consider a non-orbifold example that will be useful when we do
construct orbifolds:

Example 2.1 (6-Torus). The 6-Torus is a 3-complex-dimensional (and thus 6-real-dimensional)
manifold, defined by the identifications

zµ ∼ zµ +1 ∼ zµ + i (140)

where zµ ∈C such that (zµ)∈C3. This definition of a torus should be familiar to readers. Naturally,
a torus is compact, so all we need to show to prove T 6 is a Calabi-Yau is that it is Kähler and that
it is Ricci-flat. Note that the metric for C3 ∼= R6 is just

ds2 = (dxµ)2 +(dyµ)2 (141)

so if we define zµ = xµ + iyµ , such that dzµ = dxµ + idyµ ,dzµ̄ = dxµ̄ − idyµ̄ , then we can write
Equation (141) as

ds2 = dzµdzµ̄ (142)

= (dxµ + idyµ)(dxµ̄ − idyµ̄) (143)

= (dxµ)2 +(dyµ)2 (144)
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which matches the metric for C3. By making the identifications in Equation (140) to define T 6, we
do not affect the metric and so T 6 can inherit this induced metric from C3. Therefore, considering
Definition 2.3, we have shown that T 6 with the metric above is Hermitian, such that

ds2 = gµν̄dzµdzν̄ = δµν̄dzµdzν̄ (145)

To extend this to being Kähler, we need to define the ACS (or Kähler form) and show it’s closed.
We’ve seen in Lemma 2.3 that we can define the Kähler form on an Hermitian manifold by

J = Jµν̄dzµ ∧dzν̄ (146)

= igµν̄dzµ ∧dzν̄ (147)

= iδµν̄dzµ ∧dzν̄ (148)

which we can then take the exterior derivative of

dJ = (∂ + ∂̄ )J = i(∂ + ∂̄ )δ (149)

= i
∂δµν̄

∂ zλ
dzλ ∧dzµ ∧dzν̄ + i

∂δµν̄

∂ zλ̄
dzλ̄ ∧dzµ ∧dzν̄ (150)

= 0 (151)

as clearly δ vanishes under a derivative. Therefore we have shown that T 6 is a Kähler manifold.
All we need to do to prove it is a Calabi-Yau is to show it’s Ricci-flat, which in this case is very
simple. Recall Theorem 2.4, and recognise that the determinant of our metric is detδµν̄ = 1, then

R = i∂ ∂̄ log1 = 0 (152)

Thus T 6 is a Ricci-flat Kähler manifold, and therefore a Calabi-Yau manifold of complex dimension
3.

Now that we’ve shown that T 6 is Calabi-Yau, we would like to consider it’s Hodge numbers.
Note that in Theorem 2.7 we said that for non-simply connected Calabi-Yau manifolds we do not
have the usual Hodge diamond as in Theorem 2.7, so we’ll have to see what the Hodge numbers
are for a Calabi-Yau in this case. We know from Corollary 2.3 that b11 ≥ 1, so all we need to do
is determine if there are any more harmonic (1,1)-forms for T 6. Consider the basis of harmonic
(1,1)-forms:

{ωµν̄ = dzµ ∧dzν̄ |△ω = 0} (153)

We could pick
(3

1

)
indices for µ and the same for ν̄ . Therefore we have

b11 =

(
3
1

)
∗
(

3
1

)
= 9 (154)

We can obtain b21 = b12 by following the same logic as b11: we have basis of harmonic (1,2)-forms

{ω
µν̄λ̄

= dzµ ∧dzν̄ ∧dzλ̄ |△ω = 0} (155)
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Then we have again
(3

1

)
choices of indices for µ and

(3
2

)
indices for ν̄ , λ̄ . Therefore

b12 =

(
3
1

)
∗
(

3
2

)
= 9 (156)

For a simply-connected Calabi-Yau we would then be able to write the Hodge diamond as

1
0 0

0 9 0
1 9 9 1
0 9 0
0 0
1


(157)

but as the Torus is not simply-connected, we have to work around this. It is worth noting that some
authors require simply-connectedness in the definition of Calabi-Yau manifolds. Using the same
logic as the calculation of b11,b12, we can thus say that

bpq =

(
3
p

)
∗
(

3
q

)
(158)

such that the Betti numbers, from Lemma 2.4, end up being

bk =

(
6
k

)
(159)

Therefore the Hodge diamond of the 6-Torus looks like two Pascal triangles connected together. We
can write the (3-0)-form of T 6 as

Ω = εµνρdzµ ∧dzν ∧dzρ (160)

which is clearly harmonic, and provides an alternative proof that T 6 is a Calabi-Yau.

Now that we’ve seen the example of a non-simply connected Calabi-Yau, it would be good to
find an example that has the Hodge diamond as given in Theorem 2.7. To do this, we can use our
T 6 example and create an orbifold.

Definition 2.13 (Complex Orbifold). Let M be a complex manifold and G be a discrete group, then

Γ = M/G (161)

is a complex orbifold [14].

Theorem 2.8 (Orbifold Singularities). Let Γ = M/G be a complex orbifold. If nontrivial group
elements of G leave points in M invariant, then these points are orbifold singularities [2]. That is,
for each z ∈ M, if we define the stabilizer subgroup to be

Stab(z) = {g ∈ G|g · z = z} (162)
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such that if Stab(z) ̸= {1} then z is a singular point of the orbifold [10]. Thus, clearly, if a form in
a cohomology group of M is not invariant under G then it is not in the cohomology group of the
orbifold.

Example 2.2 (One-dimensional Orbifold). We can begin by looking at one-dimensional examples
of complex orbifolds. A natural choice of 1-D complex manifold M is C, the complex plane. We can
then pick G to be Zn, i.e.

Zn = {e
2kiπ

n |k ∈ {1, ..,n}} (163)

which is just the finite set of rotations in the plane by an angle 2π

n . By taking this quotient we are
saying that for z ∈ C we get

z ∼ e
2iπ
n z (164)

For the case of Z2 this would mean z ∼−z, and thus we end up with a cone [2]. We can calculate
the singularities of this by saying

e
2iπ
n z = z (165)

which only has solution z=0. Therefore for all orbifolds C/Zn, we get a singularity at the origin.
The orbifold is technically no longer a manifold as it is no longer smooth. Therefore this cannot be
a Calabi-Yau, as well as the fact that it is non-compact. With this being said, we can smooth out
singularities of orbifolds using Eguchi-Hanson spaces to recover manifolds, which we’ll consider
in Subsection 2.4.

Example 2.3 (6-Torus Z3 Orbifold). As mentioned previously, we would like to see an example of a
simply-connected Calabi-Yau, so that we get the Hodge diamond as in Theorem 2.7. To do this, we
can take Example 2.1 and use this as our manifold M in Definition 2.13.

If we take our quotient group to be G = Z3 then we get an additional identification of

zµ ∼ e
2iπ
3 zµ (166)

from which we can now use Theorem 2.8 to calculate the singularities of the orbifold.
By looking at the singularities from the solution to Exercise 9.2 from [2], we can consider the

case of T 6/Z3 instead of T 4/Z3. That is, let our singularities take the form

zµ =
c√
3

e
πi
6 = c(

1
2
+

i
2
√

3
) (167)

for c ∈ {0,1,2}, then we get singularities [5]. c=0 is just the singularity at zµ = 0, like in the
1-complex-dimensional case in Example 2.2. Note that [2], [10], [14], and [5] all follow this
example, but none of them explicitly show why these are singularities. We shall do this now, by
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letting zµ in Equation (166) transform under g = e
2πi
3 :

e
2πi
3 zµ =

c√
3

e
2πi
3 e

πi
6 (168)

=
c√
3

e
5πi
6 (169)

=
c√
3
(−

√
3

2
+

i
2
) (170)

= c(−1
2
+

i
2
√

3
) (171)

= c(−1
2
+

i
2
√

3
)+1+ ...+1 (172)

= c(
1
2
+

i
2
√

3
) (173)

= zµ (174)

where in Equation (172) we used the fact that for T 6 we have the identification zµ ∼ zµ +1 enough
times to get a +c factor to arrive at the conclusion that for this choice of zµ we get that gzµ = zµ ,
and thus by Theorem 2.8 they are singularities. As each zµ ∈ C for (zµ) ∈ C3 can take one of these
3 values of c, and we have 3 coordinates to choose from, we get 33 = 27 singularities [5].

To show that the Hodge numbers of this orbifold match that of Theorem 2.7, we can consider
whether various forms are invariant under the action of Z3. For example:

dzµ ∧dzν̄ → e
2iπ
3 dzµ ∧ e

−2iπ
3 dzν̄ = dzµ ∧dzν̄ (175)

so these are all preserved, leaving b11 unchanged. So, what we require generally is that a (p,q)-form
has that:

2iπ(p−q)
3

= 2niπ, n ∈ Z (176)

which means that the only non-vanishing Hodge numbers are:

b00 = b33 = 1, b11 = 9, b30 = b03 = 1 (177)

so the Hodge diamond of the T 6/Z3 orbifold is:

1
0 0

0 9 0
1 0 0 1
0 9 0
0 0
1


(178)

which matches the form of Theorem 2.7. Bear in mind, like in Example 2.2, we have to smooth the
singularities for this to be considered a manifold, which we will do in Subsection 2.4.
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As mentioned in the previous examples, the singularities of an orbifold mean it is not technically
a manifold and thus can’t be a Calabi-Yau unless we repair these singularities with Eguchi-Hanson
spaces, which would affect the Hodge numbers. [2] explains that orbifold singularities are actually
not an issue in string theory, as the strings can still propagate consistently on orbifolds despite their
singularities so long as sufficient considerations are made. We would like to consider these Eguchi-
Hanson spaces regardless, and see how we might go about constructing Calabi-Yau manifolds by
the smoothing of complex orbifolds.

In particular, for the string theory reductions that we’ll be considering in Section 3 we assume
that the Euler characteristic is non-zero so that we can assume that only b11,b12 are unique to
our extra-dimensional manifolds. This assumption massively simplifies the reductions that we do,
and this is why we care about the smoothing of the T 6/Z3 orbifold, as just T 6 would have other
non-zero Hodge numbers.

2.4 Eguchi-Hanson Geometry

The n-complex-dimensional Eguchi-Hanson space, EHn, gives us a way of smoothing orbifold
singularities on manifolds. It is a convenient space to use as the metric is given explicitly, which is
not always possible for Calabi-Yau manifolds, as mentioned previously.

Definition 2.14 (Eguchi-Hanson Metric). Let wi,w j̄ ∈ Cn, and denote σ = wiwī as the magnitude
of wi [5]. Let c be some positive constant, then we can define the Eguchi-Hanson metric in n
complex-dimensions as 4 [17] [5]

gi j̄ = (1+
c

σn )
1
n {δi j̄ −

cwiw j̄

σ(c+σn)
} (179)

This metric on Cn then defines EHn. The singularity at σn = 0 is just a coordinate singularity [5].
We have used the notation of [5] to write this metric, but have given it in the form written in [17].

Lemma 2.6 (EHn Asymptotically Euclidean). Consider Definition 2.14 and let σ → ∞. We see
then that

gi j̄ → δi j̄ (180)

Thus, we call EHn asymptotically Euclidean, or rather, it is asymptotically R2n [5].

Lemma 2.7 (EHn Asymptotically Locally Euclidean). We require that metric this metric is one-to-
one, but we see that wi and e

2iπ
n wi correspond to the same value of the metric [17]. Therefore, we

make the following identification:
wi ∼ e

2iπ
n wi (181)

Then, considering Lemma 2.6, we now say that EHn is asymptotically locally Euclidean (ALE).
Thus, we get that EHn is now asymptotically R2n/Zn [17].

4The Wikipedia page for Eguchi-Hanson spaces contained a typo in this metric, which was corrected by the author.
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Lemma 2.8 (Cohomology of EH3). We shall now consider the example of EH3. From [2], we
know that EHn is Ricci-flat and Kähler, but as it is non-compact [5] it is not a Calabi-Yau manifold,
and thus will not have a globally-defined holomorphic (n,0)-form. As we are using the metric to
define the space, we know that this means

b11 = 1 (182)

from the corresponding Kähler form, and due to the Z3 identification made in Lemma 2.7 we know
that the only remaining Hodge numbers will be the usual trivial Hodge numbers, i.e. the Hodge
diamond is given by 

1
0 0

0 1 0
0 0 0 0
0 1 0
0 0
1


(183)

Proof: We have already proved that the Hodge diamond will be in the form above for all Hodge
numbers other than b11. We wish to show that our Kähler form exists by using the metric given in
Definition 2.14. Note that [5], [17], [2] do not show this, so we shall do it ourselves.

Using Lemma 2.3, we write

J = Ji j̄ dwi ∧dw j̄ = igi j̄ dwi ∧dw j̄ (184)

and from this we need to show that J is closed. Note that to use this Lemma we need gi j̄ to be
Hermitian, so it’s important to clarify this. We can write our metric in the line-segment form given
in Definition 2.2:

ds2 = (1+
c

σ3 )
1
3 {δi j̄ −

cwiw j̄

σ(c+σ3)
}dwidw j̄ (185)

so we thus see our metric is Hermitian. This is why we picked this form of the metric, similar to
[17], as opposed to the ones given in [2] and [5]. Let us simplify the metric by defining

A(σ) = 1+ cσ
−3 (186)

such that
gi j̄ = A

1
3 δi j̄ − cσ

−4A− 2
3 wiw j̄ (187)

Then we have
J = i[A

1
3 δi j̄ − cσ

−4A− 2
3 wiw j̄]dwi ∧dw j̄ (188)

To show that this form is closed, we should note some useful formulae:

∂kσ = ∂k(wiwī) (189)

= δikwī (190)

= wk̄ (191)
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and similarly
∂k̄σ = wk (192)

As well as this,
∂kA =−3cσ

−4wk̄, ∂k̄A =−3cσ
−4wk (193)

Using all of this, we can show that J is closed:

∂kJi j̄ = i[4cσ
−5A− 2

3 wiw j̄wk̄ − c2
σ
−4A− 2

3 wk̄δi j̄ −2c2
σ
−8A− 5

3 wk̄wiw j̄ − cσ
−4A− 2

3 w j̄δik] (194)

and so as a (2,1)-form we have that the δ terms vanish by symmetry, so we are left with

∂J = 2icσ
−5A− 2

3 (2− cσ
−3A−1)wk̄wiw j̄ dwk ∧dwi ∧dw j̄ (195)

= ∂kJi j̄ dwk ∧dwi ∧dw j̄ (196)

where ∂kJi j̄ is symmetric in it’s indices. Therefore, by Lemma 1.3 we have that

∂J = 0 (197)

where the same can be done to show ∂̄J = 0. Therefore,

dJ = (∂ + ∂̄ )J = 0 (198)

and J is therefore closed, and we have a Kähler form ⇒ b11 = 1

Theorem 2.9 (Smoothing of T 6/Z3 Orbifold). Recall Example 2.3, which had 27 orbifold singu-
larities. Around these singularities, for a small enough region, the space will look like R6/Z3 [17].
This is what our EH3 looks like asymptotically from Lemma 2.7. What we want to do is to remove a
very small ball from around the singularities of our orbifold and replace them with a hypersurface
of the ALE EH3, i.e. setting σ = R for constant R [5]. This can be done by letting c << 1,R >> 1
such that we obtain the ALE condition quickly, and then the boundary of our patch on the orbifold
matches that of the boundary of our patch of the ALE space, both of which are S5/Z3 as this is
the ball that we excise from both T 6/Z3 and EH3 [2]. The conditions on c and σ ensure that this
is done smoothly [2] [5]. The resulting manifold, with singularities smoothed out by the 27 EH3

patches is Calabi-Yau [5]. We would like to show that this is in fact Calabi-Yau, but this is beyond
the scope of this thesis. Due to Lemma 2.8, for every EH3 patch that we add we get an additional
(1,1)-form, and as there are 27 orbifold singularities to patch this means we have an additional
27 (1,1)-forms, as well as the original 9 (1,1)-forms from the T 6/Z3 orbifold [5]. Therefore, our
resulting Calabi-Yau manifold has it’s Hodge diamond given by

1
0 0

0 36 0
1 0 0 1
0 36 0

0 0
1


(199)
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From Theorem 2.1, we have the Euler Characteristic of this manifold being

χ = 72 (200)

which is stated in both [5] and [17].

Finally, then, we have an example of a 3-complex-dimensional simply-connected Calabi-Yau
manifold so that we can write the Hodge diamond as given by Theorem 2.7. Calabi-Yau manifolds of
this form are important for us in string theory reductions, as the Hodge numbers tell us information
about the field content of the resulting 4D theory. As mentioned previously, we assume in our
string theory reductions that the only unique Hodge numbers are b11,b12, and so to use an example
manifold for our reductions we require that this is the case.
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3 String Theory Dimensional Reduction

Now that we have equipped ourselves with an appropriate understanding of the required geometry,
we can begin to consider string theory reductions. What we hope is that having additional extra
dimensions, beyond just the single extra dimension of the motivating example of Kaluza-Klein
Theory, will allow us to arrive at a more comprehensive effective field theory. The ultimate goal of
string theory reductions would be to unify gravity with the standard model, so we would require a
number of scalar fields and vector fields in the final 4-dimensional action that match the content of
the standard model. Interestingly, what we will see in the following Subsection is that the Hodge
Diamond of the Calabi-Yau that we use to represent the extra six dimensions ends up determining
how many fields we get in the 4-dimensional action.

3.1 Dimensional Reduction of Type IIA String Theory

We can begin our reduction of Type IIA string theory by stating the action and describing it’s
content. There are four other types of string theory with their different field content, and there are
various symmetries between them. We pick Type IIA as it has a symmetry with M-Theory that
we’d like to consider later to bridge from string theory to M-Theory for Section 4.

Definition 3.1 (Type IIA Action). We define the bosonic action of Type IIA string theory as

SA = SNS +SR +SCS (201)

which correspond to the actions for what are called the NSNS and RR sectors, as well as an action
referred to as the Chern-Simons term. We can write these individual actions as follows:

SNS =
1

2κ2

∫
M

e−2φ̃{R̃ ⋆1+4dφ̃ ∧⋆dφ̃ − 1
2

H̃3 ∧⋆H̃3} (202)

SR =− 1
4κ2

∫
M
{F̃2 ∧⋆F̃2 + F̃4 ∧⋆F̃4} (203)

SCS =− 1
4κ2

∫
M
{B̃2 ∧ F̃4 ∧ F̃4} (204)

where the tildes represent 10-dimensional objects, and M =M4 ×X6 for X6 a Calabi-Yau manifold.
In these actions, R̃ is the Ricci-scalar obtained from the 10D metric on M,

H̃3 = dB̃2 (205)

is the field strength of the 2-form B̃2, and φ̃ is a scalar field. For the other 2 terms, we have field
strengths

F̃2 = dC̃1 (206)

F̃4 = dC̃3 + B̃2 ∧dC̃1 (207)
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We have written this action from [2], as well as using definitions of field strengths and conventions
from both [19] and [7] 5.

Our aim is to take this 10-dimensional action and use a dimensional reduction similar to
Subsection 1.1 to get a 4-dimensional action. This is an involved process, more so than Subsection
1.1, and while in [7] they choose to simply display the results of this process for IIB, we will give a
more detailed view for IIA using their general ideas, as well as following [13] as a guide and to
confirm our results by comparing with this paper. This process combines essentially everything
that has been introduced so far in the project into one computation, so while it may be lengthy, it
really demonstrates how all the concepts from the previous chapters are necessary for string theory.
This is an essential part of what we wish to demonstrate in this thesis - how the geometry of the
extra dimensions determines the resulting 4D theory.

Theorem 3.1 (Dimensional Reduction of IIA). Due to the large size of SA, we shall reduce each
term at a time to make the calculation more manageable. To begin with SNS, we say that X6 has two
independent Hodge numbers b11,b21, as seen for Calabi-Yau manifolds in Theorem 2.7. This is
essentially assuming that X6 is simply-connected. Our metric for M is

ds2 = gIJdxIdxJ = gµνdxµdxν +gi j̄dzidz j̄ (208)

i.e. the product metric. In our action in Definition 3.1, the Hodge star is over the whole 10-
dimensional manifold M. When we make the expansions above, we now have field content either on
M4 and X6, and so we need to differentiate between what the Hodge star is acting on:

⋆10(A∧B) = (−1)pq ⋆4 (A)∧⋆6(B) (209)

where A ∈ H p(M4),B ∈ Hq(X6) [13]. This is just a rewrite of Lemma 1.7, just to make it clearer
for this particular application. The same applies also to the exterior derivative, which has a simpler
relationship: d10 = d4 +d6, from Lemma 1.6. As our expansions are in terms of harmonic forms on
X6, we will have that d6 vanishes wherever it is used.

We label the basis of H(1,1)(X6) as {ωi}b11
i=1 and make the expansions [7]

R̃ ⋆10 (1) = R ⋆4 (1)∧⋆6(1)+
1
2

dvi(x)∧ωi(z)∧⋆(dv j(x)∧ω j(z)) (210)

B̃2 = B2(x)+bi(x)ωi(z) (211)

φ̃ = φ(x) (212)

where x ∈M4, z ∈ X6. Here, φ(x),vi,bi are scalar fields on M4, with i ∈ {1, ..,b11}, and B2 is a
2-form on M4 also. We have taken the Ricci scalar expansion from [3] and the other two from [7].
We can take expansions from [7] for our IIA reduction, even though [7] considers a IIB reduction,
as both IIA and IIB share the SNS term [19].

5Note that [7] considers the IIB action - I have simply tried to follow the style used there for our IIA action.
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The Ricci scalar expansion comes from taking derivatives of the deformation of the metric on
X6:

δgi j̄ = va
ω

a
i j̄ (213)

where ωa
i j̄ are the basis forms of H(1,1)(X6), the same as in the expansion of B̃2. I have chosen not

to show this derivation of the expansion of R̃ as it is a lengthy calculation and does not give us
more insight than the reduction of the 5D Einstein-Hilbert action in Theorem 1.1, so considering
that example just with extra dimensions will be sufficient. As φ̃ is just a scalar on M, we can simply
just let it depend only on M4 and this gives us our 4D expansion as above. This is similar to taking
the zero modes in the Fourier expansion in Definition 1.2.

We would like to define the product on H(1,1)(X6) via the ω forms, as this will help to simplify
our expressions. We use the following: [7]

Gi j =
∫

X6

ωi ∧⋆6ω j (214)

and can then begin to substitute our expansions into SNS:

SNS =
1

2κ2

∫
M4×X6

e−2φ{R ⋆4 (1)∧⋆6(1)+
1
2
(d10vi)∧ω

i ∧⋆10(d10(v j)∧ω
j)+4d10φ ∧⋆10d10φ

− 1
2

d10(B2 +bi
ω

i)∧⋆10d10(B2 +b j
ω

j)} (215)

=
1

2κ2

∫
M4×X6

e−2φ{R ⋆4 (1)∧⋆6(1)+
1
2
(d4vi)∧ωi ∧⋆4(d4v j)∧⋆6ω j +4d4φ ∧⋆4d4φ

− 1
2

d4B2 ∧⋆4dB2 ⋆6 1− 1
2

d4B2 ∧⋆4(d4bi)∧⋆6ωi −
1
2

d4bi ∧ωi ∧⋆4(d4B2)⋆6 1 (216)

− 1
2

d4bi ∧ωi ∧⋆4(d4b j)∧⋆6ω j}

=
1

2κ2
(4)

∫
M4

e−2φ{R ⋆4 1− 1
2

Gi jd4vi ∧⋆4d4v j +4d4φ ∧⋆4d4φ (217)

− 1
2

d4B2 ∧⋆4d4B2 +
1
2

Gi jd4bi ∧⋆4d4b j}

We see that the underlined terms in Equation (216) vanish as after the Hodge star acts on the
forms we end up getting a 6-form on M4 and an 8-form on X6, which both obviously vanish. This
argument will be key for the rest of this reduction of IIA, and we will continue to underline terms
where this happens for the rest of this thesis. The reason why we have simply replaced d10 for d4 is
because the forms on X6 that we have included in our expansion are harmonic forms, and so these
terms vanish under d6, and d6 acting on fields on M4 vanish due to being independent of the M4

coordinates. We get some sign changes in Equation (217) due to the permuting of wedge products
to get the form required for Gi j. We will do this without mentioning it in the future as it’s of little
consequence overall.
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Now we can begin to consider the SR term. We take the following expansions: [13]

C̃1 =C1(x) (218)

C̃3 =C3(x)+Ai
1(x)∧ωi(z)+ pk(x)αk(z)+qk(x)β k(z) (219)

This expansion is essentially all possible ways to obtain a 3-form from the harmonic expansions of
X6: {αk}b21

k=1 is the basis of harmonic forms on H(2,1), {β k}b12
k=1 is the basis of harmonic forms on

H(1,2). Note that b12 = b21 as these spaces are related by the complex conjugate of one another,
and so H(2,1),H(1,2) are dual spaces. The term Ai

1 ∧ωi is a 3-form obtained by the wedge with the
basis of forms ωi on H(1,1) and a collection of 1-forms Ai on M4.

From these expansions, we can begin to consider what SR will look like. Clearly,∫
M4×X6

F̃2 ∧⋆10F̃2 =
∫
M4×X6

d10C̃1 ∧⋆10d10C̃1 (220)

=
∫
M4

d4C1 ∧⋆4d4C1 (221)

so we can simply say ∫
M

F̃2 ∧⋆10F̃2 =
∫
M4

F2 ∧⋆4F2 (222)

The expansion of the F̃4 term is more complicated:∫
M

F̃4 ∧⋆F̃4 =
∫
M4×X6

{d10C̃3 ∧⋆10d10C̃3 + B̃2 ∧d10C̃1 ∧⋆10(B̃2 ∧d10C̃1) (223)

−d10C̃3 ∧⋆10(B̃2 ∧d10C̃1)− B̃2 ∧d10C̃1 ∧⋆10d10C̃3}

=
∫
M4×X6

{d10C̃3 ∧⋆10d10C̃3 + B̃2 ∧d10C̃1 ∧⋆10(B̃2 ∧d10C̃1) (224)

−2B̃2 ∧d10C̃1 ∧⋆10d10C̃3}

We can combine the final two terms in Equation (223) as the exterior product of two forms is
symmetric (Definition 1.11). This will be quite a long calculation to do all at once, so we’ll split the
expansion of these three terms up and do them separately, beginning with the first term:
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∫
M4×X6

d10C̃3 ∧⋆10d10C̃3

=
∫
M4×X6

d10(C3 +Ai
1 ∧ωi + pk

αk +qkβ
k)∧⋆10d10(C3 +Ai

1 ∧ωi + pk
αk +qkβ

k) (225)

=
∫
M4×X6

d4C3 ∧⋆4d4C3 +d4Ai
1 ∧ωi ∧⋆4d4A j

1 ∧⋆6ω j (226)

+d4Ai
1 ∧ωi ∧⋆4d4C3 ⋆6 1+d4C3 ∧⋆4d4Ai

1 ∧⋆6ωi +d4C3 ∧⋆4d4 pk ∧⋆6αk

+d4 pk ∧αk ∧⋆4d4C3 ⋆6 1+d4 pk ∧αk ∧⋆4dAi
1 ∧⋆6ωi +dAi

1 ∧ωi ∧⋆4d4 pk ∧⋆6αk

+d4qk ∧β
k ∧⋆4d4C3 ⋆6 1+d4C3 ∧⋆4d4qk ∧⋆6β

k +d4qk ∧β
k ∧⋆4d4Ai

1 ∧⋆6ωi

+d4Ai
1 ∧ωi ∧⋆4d4qk ∧⋆6β

k +d4qk ∧β
k ∧⋆4d4 pl ∧⋆6αl +d4 pk ∧αk ∧⋆4d4ql ∧⋆6β

l

+d4qk ∧β
k ∧⋆4d4ql ∧⋆6β

l +d4 pk ∧αk ∧⋆4d4 pl ∧⋆6αl

where we have continued to underline all terms that vanish due to containing an N-form on an
n-dimensional space where N > n. At this point we need to make some clarifications about the
relationships between the basis elements α,β :∫

X6

αk ∧⋆β
l = (M1)

l
k (227)∫

X6

αk ∧⋆αl = (M2)kl (228)∫
X6

β
k ∧⋆β

l = (M3)
kl (229)

where these three new matrices involve coupling values [13]. I’m not going to go into what these
three matrices involve as I don’t believe they are particularly insightful for this project. With this,
then, we can write the reduction of the first term as:∫

M4×X6

dC̃3 ∧⋆dC̃3 =
∫
M4

dC3 ∧⋆dC3 −Gi jdAi
1 ∧⋆dA j

1 − (M1)
l
kdqk ∧⋆d pl

− (M1)
l
kd pk ∧⋆d4ql − (M3)

kldqk ∧⋆dql − (M2)kld pk ∧⋆d pl (230)

To then continue with the second term of the F̃4 reduction:∫
M4×X6

B̃2 ∧d10C̃1 ∧⋆10(B̃2 ∧d10C̃1)

=
∫
M4×X6

(B2 +bi
ωi)∧d4C1 ∧⋆10((B2 +b j

ω j)∧d4C1) (231)

=
∫
M4×X6

B2 ∧d4C1 ∧⋆4(B2 ∧d4C1)∧⋆61+B2 ∧d4C1 ∧⋆6(b j
ω j)∧⋆4d4C1 (232)

+bi
ωi ∧d4C1 ∧⋆4(B2 ∧d4C1)∧⋆61+bi

ωi ∧d4C1 ∧⋆6(b j
ω j)∧⋆4d4C1

=
∫
M4

B2 ∧dC1 ∧⋆(B2 ∧dC1)−Gi jbidC1 ∧⋆(b jdC1) (233)
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where again I have underlined terms that vanish due to the dimension of the forms included.
Finally, the third term of the F̃4 reduction:∫

M4×X6

B̃2 ∧d10C̃1 ∧⋆10d10C̃3

=
∫
M4×X6

(B2 +bi
ωi)∧d4C1 ∧⋆10(d4C3 +d4A j

1 ∧ω j +d4 pk ∧αk +d4qk ∧β
k) (234)

=
∫
M4×X6

B2 ∧d4C1 ∧⋆4d4C3 ∧⋆61+B2 ∧d4C1 ∧⋆4d4A j
1 ∧⋆6ω j (235)

−B2 ∧d4C1 ∧⋆4d4 pk ∧⋆6αk −B2 ∧d4C1 ∧⋆4d4qk ∧⋆6β
k

+bi
ωi ∧d4C1 ∧⋆4d4C3 +bi

ωi ∧d4C1 ∧⋆4d4A j
1 ∧⋆6ω j

−bi
ωi ∧d4C1 ∧⋆4d4 pk ∧⋆6αk −bi

ωi ∧d4C1 ∧⋆4d4qk ∧⋆6β
k

=
∫
M4

B2 ∧dC1 ∧⋆dC3 +Gi jbidC1 ∧⋆dA j
1 (236)

We can now bring all of the terms for the F̃4 reduction together to say∫
M4×X6

F̃4 ∧⋆F̃4 (237)

=
∫
M4

{dC3 ∧⋆dC3 −Gi jdAi
1 ∧⋆dA j

1 − (M1)
l
kdqk ∧⋆d pl

− (M1)
l
kd pk ∧⋆d4ql − (M3)

kldqk ∧⋆dql − (M2)kld pk ∧⋆d pl

+B2 ∧dC1 ∧⋆(B2 ∧dC1)−Gi jbidC1 ∧⋆(b jdC1)−2B2 ∧dC1 ∧⋆dC3 −2Gi jbidC1 ∧⋆dA j
1}

=
∫
M4

{dC3 ∧⋆dC3 −2(B2 ∧dC1)∧⋆dC3 +(B2 ∧dC1)∧⋆(B2 ∧dC1) (238)

−Gi j(dAi
1 ∧⋆dA j

1 +2bidC1 ∧⋆dA j
1 +bidC1 ∧⋆(b jdC1))

− (M1)
l
k(d pk ∧⋆dql +dql ∧⋆d pk)− (M2)kld pk ∧⋆d pl − (M3)

kldqk ∧⋆dql}

which is our final expression for the F̃4 reduction. Thankfully, this result agrees with [13].
The only remaining thing to do is to reduce the Chern-Simons term:∫

M4×X6

{B̃2 ∧ F̃4 ∧ F̃4}

=
∫
M4×X6

{(B2 +bi
ωi)∧ (d4C3 +d4A j

1 ∧ω j +d4 pk ∧αk +d4qk ∧β
k +B2 ∧d4C1 +b j

ω j ∧d4C1)

∧ (d4C3 +d4Am
1 ∧ωm +d4 pl ∧αl +d4ql ∧β

l +B2 ∧d4C1 +bm
ωm ∧d4C1)} (239)

The previous expanded terms of the IIA action have been lengthy, but this Chern-Simons term will
have 72 terms in total, most of which will vanish. It would not be feasible to go through each of
these terms individually, nor would it be insightful. So, for the Chern-Simons we will use some
dimensional analysis of the terms involved to determine which terms will survive.
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Form Dim on M4 (M) Dim on X6 (X)

B2 2M 0
biωi 0 2X

d4C3 4M 0
d4A j

1 ∧ω j 2M 2X
d4 pk ∧αk 1M 3X
d4qk ∧β k 1M 3X
B2 ∧d4C1 4M 0

b jω j ∧d4C1 2M 2X

Table 1: Dimension of forms in Chern-Simons term of IIA action

We want to have terms that have 4 indices on M4 and 6 indices on X6, i.e. terms whose
dimension is (4M + 6X), where the M denotes how many indices there are on M4 and the same for
the X with X6. Table 1 shows how many indices each term has on each manifold, and from this we
can work out that the terms which survive are those of the form, where we pick one of the first two
forms and two of the latter forms:

(2M)+(1M+3X)+(1M+3X)→ 4 terms (240)

(2X)+(2M+2X)+(2M+2X)→ 4 terms (241)

where the order of the terms in these dimensional sums corresponds to the choice of form from each
of the three wedges in Equation (239). Thus, we can choose these surviving 8 terms as follows:∫

M4×X6

{B2 ∧ (d4 pk ∧αk +d4qk ∧β
k)∧ (d4 pl ∧αl +d4ql ∧β

l) (242)

+bi
ωi ∧ (d4A j

1 ∧ω j +b j
ω j ∧d4C1)∧ (d4Am

1 ∧ωm +bm
ωm ∧d4C1)}

It’s worth noting again that the Chern-Simons term is topological, and thus does not contain any
Hodge stars. Because of this, we need to clarify what the wedge product of the basis elements
αk,β

l,ωi are: [13] ∫
X6

αk ∧β
l = δ

l
k =−

∫
X6

β
l ∧αk (243)∫

X6

αk ∧αl =
∫

X6

β
k ∧β

l = 0 (244)

Ki jm =
∫

X6

ωi ∧ω j ∧ωm (245)

where Equation (243) is because α,β are dual bases to one another, Equation (244) is because
these are products of basis forms, and Equation (245) are intersection numbers from Definition
1.13.
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Finally, we can write out what the dimensional reduction of the Chern-Simons term is by
continuing from Equation (242):∫

M4×X6

B̃2 ∧ F̃4 ∧ F̃4

=
∫
M4×X6

{B2 ∧ (d4 pk ∧αk +d4qk ∧β
k)∧ (d4 pl ∧αl +d4ql ∧β

l) (246)

+bi
ωi ∧ (d4A j

1 ∧ω j +b j
ω j ∧d4C1)∧ (d4Am

1 ∧ωm +bm
ωm ∧d4C1)}

=
∫
M4×X6

{B2 ∧ (d4 pk ∧αk ∧d4 pl ∧αl +d4 pk ∧αk ∧d4ql ∧β
l (247)

+d4qk ∧β
k ∧d4 pl ∧αl +d4qk ∧β

k ∧d4ql ∧β
l)}

+
∫
M4

Ki jmbi(d4A j
1 −b jd4C1)∧ (d4Am

1 −bmd4C1)

=
∫
M4

{B2 ∧ (dqk ∧d pk −d pk ∧dqk) (248)

+Ki jmbi(d4A j
1 −b jd4C1)∧ (d4Am

1 −bmd4C1)}

which agrees with [13].
We have therefore managed to dimensionally reduce all three terms of the Type IIA action, and

we can write down our final 4D action:

S4 =
1

2κ2
(4)

∫
M4

e−2φ{R ⋆1+
1
2

Gi jdvi ∧⋆dv j +4dφ ∧⋆dφ (249)

− 1
2

dB2 ∧⋆dB2 −
1
2

Gi jdbi ∧⋆db j}− 1
2
{dC1 ∧⋆dC1 +dC3 ∧⋆dC3

−2(B2 ∧dC1)∧⋆dC3 +(B2 ∧dC1)∧⋆(B2 ∧dC1)

+Gi j(dAi
1 ∧⋆dA j

1 −2bidC1 ∧⋆dA j
1 +bidC1 ∧⋆(b jdC1))

+(M1)
l
k(d pk ∧⋆dql +dql ∧⋆d pk)+(M2)kld pk ∧⋆d pl +(M3)

kldqk ∧⋆dql}

− 1
2
{B2 ∧ (dqk ∧d pk −d pk ∧dqk)+Ki jmbi(dA j

1 −b jdC1)∧ (dAm
1 −bmdC1)}

where we have now got a theory with 4D field content:

• Ricci Scalar R

• 2b11 +2b12 +1 scalar fields: vi,bi, pk,qk,φ

• b11 +1 1-forms: C1,Ai
1

• A 2-form: B2

• A 3-form: C3
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with various coupling terms of these fields. In [7], [13] some of the scalar fields are combined
together to create complex scalar fields, but we won’t do this.

To ensure that this reduction is consistent, we should also check that the equations of motions
are the same from the two actions. We can do this via variational calculus. We will not do this for
the IIA reduction as this will be a significantly large calculation due to the number of fields in the
4D action, but we have done this later in Theorem 4.3 as this is simpler.

In Theorem 3.1 we had X6 being a general Calabi-Yau manifold. We can consider an example
from Subsection 2.3 and use that as our extra 6-dimensional space in the reduction. Really, the only
thing to consider are the Hodge numbers, as these tell us what the resulting field content will be.

Example 3.1 (Smoothed T 6/Z3 Reduction). The example that we will choose is the T 6/Z3 with
it’s orbifold singularities smoothed by Eguchi-Hanson spaces, namely the manifold from Theorem
2.9. The Hodge numbers of this manifold were given as

b11 = 36, b12 = 0 (250)

This then means that our resulting field content in 4D is:

• Ricci scalar R

• 73 scalar fields

• 37 1-forms

• A 2-form

• A 3-form

Consider the standard model - by counting each field in the action individually we see it has a
grand total of 61 fields. Counting the number of fields we have (not including the Ricci scalar),
we get 102. This means that this example manifold is likely not the manifold that represents the
possible extra dimensions of our universe. Moreover, we have considered only the bosonic IIA
action, and the standard model contains both bosons and fermions. The idea is that by choosing a
correct Calabi-Yau, we would end up with the same field content as the standard model, as well as
a Ricci scalar to describe general relativity. Sadly, choosing the correct manifold is a very difficult
problem. There is a problem in physics called The Swampland which addresses this - we’ll speak
more about it in our conclusions in Section 5.

3.2 M-Theory and IIA

We have seen in the previous subsection that we can dimensionally reduce Type IIA string theory
into an effective 4D action. Something we’d like to consider before the next section is how we can
achieve the IIA action from an 11-dimensional action. This 11D action is the low-energy limit of
M-Theory, known as 11D Supergravity. We can state the action as follows:
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Definition 3.2 (Action of 11D Supergravity). We have an action over an 11-dimensional manifold
M11 given by

S =
1

2κ2
(11)

∫
M11

R̃⋆11 1− 1
2

F̃4 ∧⋆F̃4 −
1
6

Ã3 ∧ F̃4 ∧ F̃4 (251)

where F̃4 = dÃ3 [19].

We can see that this action has spectrum g̃IJ, Ã3. In the following theorem, we will find
a duality between this low-energy M-Theory and Type IIA string theory, which has spectrum
gIJ,B2,φ ,C3,C1.

Theorem 3.2 (M-Theory on S1 ∼= IIA). For 11-dimensional supergravity given in Definition 3.2 on
a manifold M11 = M10 ×S1, by dimensional reduction of the S1 we arrive at the same action for
Type IIA string theory given in Definition 3.1. That is, 11-dimensional supergravity on M10 ×S1 ∼=
Type IIA string theory [19].

Proof:
We begin with the action above in Definition 3.2, and say that our 11-dimensional manifold

M11 = M10×S1. Think back to Subsection 1.1 where we made the Kaluza-Klein ansatz in Definition
1.2 to get a vector and a scalar field from the 5D metric - we will do the same here in 11D to 10D:

g̃IJ =

(
gµν Cν

Cµ φ

)
(252)

where I,J = 0, ..,10 and µ,ν = 0, ..,9. Cµ then gives us a 1-form which we’ll refer to as C1, and
we also get a scalar field φ . We do a similar process for Ã3 by splitting ÃIJK into: [19]

Ãµνλ =Cµνλ (253)

Ãµν10 = Bµν (254)

where we refer to the corresponding 3-form and 2-form as C3,B2, respectively.
To reduce the action into 10D, we first consider Theorem 1.1 and realise that we essentially

have the exact same scenario for the Ricci scalar term, just in 11D to 10D here. Using the same
form for the Ricci Scalar as the one given in [12], and using the following expansions from 11D
into 10D, we write, where x10 is the coordinate of the S1:

R̃⋆11 1 = [R⋆10 1− 1
4

F2 ∧⋆10F2 +4dφ ∧⋆10φ ]∧dx10 (255)

F̃4 ∧⋆11F̃4 = dÃ3 ∧⋆11dÃ3 = [dC3 ∧⋆10dC3 +dB2 ∧⋆10dB2]∧dx10 (256)

Ã3 ∧dÃ3 ∧dÃ3 = B2 ∧dC3 ∧dC3 ∧dx10 (257)

where we have

F2 = dC1 (258)

F4 = dC3 (259)
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and ⋆10 is the Hodge star on M10. Here we write d as the exterior derivative on M10 as we choose
that nothing in our expansion, other than dx10, depends on the S1. Note that our field strength of
C3 in Equation (259) does not quite match the form given in Equation (207), but we could choose
to just rescale F4 here to match this6.

In Equation (255) we have, as mentioned, used a previously used expansion, however we have
rescaled the φ term to obtain a preferable constant for later on. As well as this, we’ve turned the
FµνFµν into 2-form notation, as well as the ∂µφ∂ µφ term. In Equation (256), we used the fact
that Ã3 can be decomposed into a 3-form and 2-form in 10D as seen in Equations (253) and (254),
and the summation over the indices gives us this form. Equation (257) is due to the fact that this
is the only expansion of the three Ã3 in this term that gives a 10-form on M10 - this is the same
dimensional analysis approach to what we did for the Chern-Simons term in the IIA reduction.

Therefore, we can write our 11D action as

S =
1

2κ2
(11)

∫
M10×S1

{R ⋆10 1− 1
4

F2 ∧⋆10F2 +4dφ ∧⋆10dφ

− 1
2
(dC3 ∧⋆10dC3 +dB2 ∧⋆10dB2) (260)

− 1
6
(B2 ∧dA3 ∧dA3)}∧dx10

=
πR

κ2
(11)

∫
M10

{R ⋆1− 1
4

F2 ∧⋆F2 +4dφ ∧⋆dφ

− 1
2
(F4 ∧⋆F4 +H3 ∧⋆H3) (261)

− 1
6
(B2 ∧F4 ∧F4)}

where we have field strengths defined as Fk = dCk−1,H3 = dB2. Comparing this result with the
action in Definition 3.1 we can see that, ignoring some scaling of various fields, this is the Type IIA
action. We can compare the coupling constant from our 11-dimensional action with the IIA action:

κ
2 =

κ2
(11)

2πR
(262)

so we see that as the radius of the extra dimension scales, the strength of the coupling of the IIA
action is scaled inversely. Thus, the size of the 11th dimension determines the strength of the
10-dimensional theory.

6This mismatch is not addressed in [19].
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4 M-Theory Dimensional Reduction

In the previous chapter we reduced Type IIA string theory on 6-dimensional Calabi-Yau manifolds,
and saw that we obtained a 4-dimensional theory with some interesting field content. Additionally,
we saw that the IIA action can be derived from an 11-dimensional low-energy limit to M-theory. In
that derivation, we said that the extra 7-dimensional manifold was a sum of a Calabi-Yau and a
circle, and so the IIA reduction in Theorem 3.1 could be considered, by taking Theorem 3.2 into
account, as a reduction of M-theory on this 7-dimensional X6 ×S1. The purpose of this chapter is to
introduce M-theory reductions on more interesting 7-dimensional manifolds, namely G2 manifolds.
In the first subsection we will introduce the geometry of these manifolds and then in the second
subsection we will dimensionally reduce the action in Definition 3.2 on G2 manifolds. The gauge
symmetry group of the standard model is SU(3)×SU(2)×U(1), which to be represented as a Lie
group requires 7 dimensions [22], and so to have this appear as the resulting gauge symmetry for a
4D theory we require 11 dimensions. The action we saw in Definition 3.2 was for 11D supergravity,
which is a low energy approximation of M-theory. A fascinating coincidence is that 11 dimensions
is the maximum dimension for supergravity [22], and the minimum required for the standard model
gauge symmetry. This could be an indicator that M-theory could be the correct theory to unify
gravity with the standard model. With this, we shall begin our study of G2-manifolds, the required
extra dimensions for M-theory. We will then dimensionally reduce M-theory on G2-manifolds,
analyse the 4D field content and then see whether the 4D theory has the same gauge symmetry as
the standard model.

4.1 G2 Manifolds

For our discussion of G2 manifolds, we turn to [10] as a main reference. Additionally, we use parts
of [2] where appropriate. An interesting thing to note is that G2 manifolds are sometimes referred
to as Joyce manifolds, as Joyce was the first to construct compact manifolds with holonomy G2 [9].
These are relatively new manifolds and are still being actively researched.

Definition 4.1 (Exceptional Lie group G2). Let xI ∈ R7 such that we can define a 3-form on R7 by

ϕ0 = dx123 +dx145 +dx167 +dx246 −dx257 −dx347 −dx356 (263)

where we introduce notation dxi jk = dxi ∧dx j ∧dxk [10]. We define the Lie group G2 as the group
of transformations that leave ϕ0 invariant, i.e. by using the definition of a stabilizer group from
Definition 2.8 we say that [10]

G2 = stab(ϕ0) (264)

We can use the induced Euclidean metric from R7 to take the Hodge star of ϕ0 to get a 4-form [10]

⋆ϕ0 = dx4567 +dx2367 +dx2345 +dx1357 −dx1346 −dx1256 −dx1247 (265)

where each term from ϕ has simply had it’s choice of indices inverted.
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Definition 4.2 (G2-Manifolds). Our definition of a G2-manifold is a 7-dim compact, simply-
connected manifold (M,g) that has an isomorphism TpM ∼= R7 such that we have a 3-form ϕ and
4-form ⋆ϕ on TpM that are isomorphic to ϕ0,⋆ϕ0 on R7 such that [10]

dϕ = 0 (266)

d ⋆ϕ = 0 (267)

It can be shown that this condition is equivalent to M having holonomy G2, but we will usually use
the former definition for a G2-Manifold.

Corollary 4.1 (Harmonic 3-form). The closed 3-form ϕ that defines a G2-manifold is harmonic.
Proof: From Equation (267) we can apply a Hodge star on the left-hand side to get:

⋆d ⋆ϕ = 0 (268)

Recall Definition 1.14, and notice that this is what we have above, so we can write

d†
ϕ = 0 (269)

which means that the Laplacian acting on ϕ is

△ϕ = (dd† +d†d)ϕ = 0 (270)

Theorem 4.1 (Calabi-Yau × S1 is G2). Let (X, h) be a simply connected Calabi-Yau with real
dimX = 6, with Kähler form J and holomorphic (3,0)-form Ω. Let θ ∈ S1 such that S1 has a 1-form
dθ . Then

ϕ = dθ ∧ J+Re(Ω) (271)

⋆ϕ = J∧ J−dθ ∧ Im(Ω) (272)

define a G2-Manifold 7 [10].
Proof: A proof of this is not included in [10], so we shall do this now. All we need to do is show

that ϕ,⋆ϕ are both closed. Beginning with ϕ ,

dϕ = d(dθ ∧ J)+d(Re(Ω)) (273)

= d(dθ)∧ J−dθ ∧dJ (274)

= 0 (275)

where d(Re(Ω)) vanishes due to Ω being harmonic and dJ vanishes as X is Calabi-Yau and thus
Kähler, so the Kähler form J must be closed. dθ is closed as it provides a basis for H1(S1) and is
therefore harmonic.

We can show how to derive ⋆ϕ from ϕ , and then show it’s also closed:

7[10] uses a normalisation constant of 1
2 for the J∧ J term, which we do not include.
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⋆ϕ = (−1)np ⋆7 (dθ ∧ J+1∧Re(Ω)) (276)

=−⋆7 (dθ ∧ J)−⋆7(1∧Re(Ω)) (277)

=+⋆1 (dθ)∧⋆6(J)−⋆1(1)∧⋆6(Re(Ω)) (278)

= 1∧ J∧ J−dθ ∧ Im(Ω) (279)

= J∧ J−dθ ∧ Im(Ω) (280)

where ⋆1 is the Hodge star on S1 and ⋆6 is the Hodge star on X. We’ve used that the Hodge star of
the Kähler form is the Kähler form wedged with itself, as well as the Hodge star of the real part of
the (3,0)-form being the imaginary part of the (3,0)-form [8]. We can show that this is closed:

d ⋆ϕ = d(J∧ J)−d(dθ ∧ Im(Ω)) (281)

= dJ∧ J+ J∧dJ−d(dθ)∧ Im(Ω)+dθ ∧d(Im(Ω)) (282)

= 0 (283)

Lemma 4.1. The Betti numbers of a G2-Manifold with hol(g) = G2 are given by: [16] [10]

b0 = b7 = 1, b1 = b6 = 0, b2 = b5, b3 = b4 (284)

Note that if hol(g) ⊂ G2 then b1 does not necessarily vanish. We see that this means the Betti
numbers are completely free in the case of hol(g)⊂ G2.

Now that we have introduced G2-manifolds, we would like to construct some examples. We
will give one example with hol(g)⊂ G2 through a Calabi-Yau construction, and then we’ll give
an example that has hol(g) = G2 which does not use Calabi-Yau constructions. Our M-theory
reductions assume hol(g) = G2, so the latter example would be the more appropriate example to
consider as the extra dimensions of an M-theory reduction.

Example 4.1 (G2-manifold from smoothed T 6/Z3 orbifold). In Example 2.9 we used Eguchi-
Hanson spaces to smooth the T 6/Z3 orbifold in Example 2.3. We said that the resulting manifold
M was a 3-complex-dimensional Calabi-Yau manifold. Also, the resulting manifold was simply-
connected. Therefore, we can use Theorem 4.1 and Example 2.9 to construct a smooth G2-manifold:

Y = M×S1 is a smooth G2-manifold (285)

The Betti numbers of this G2-manifold Y can be computed by using the Hodge numbers from
Example 2.9 and the fact that [5]

b0(S1) = 1,b1(S1) = 1 (286)
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To obtain the Betti numbers of M from it’s Hodge numbers, we use Lemma 2.4:

b0(M) = 1 (287)

b1(M) = 0 (288)

b2(M) = 36 (289)

b3(M) = 2 (290)

Using Definition 1.19, we can find that:

b0(Y ) = b0(M) ·b0(S1) = 1 (291)

b1(Y ) = b0(M) ·b1(S1) = 1 (292)

b2(Y ) = b2(M) ·b0(S1) = 36 (293)

b3(Y ) = b2(M) ·b1(S1)+b3(M) ·b0(S1) = 38 (294)

so that finally we have Betti numbers of Y:

(b0,b1,b2,b3) = (1,1,36,38) (295)

Note that the reason b1 does not vanish here, as mentioned in Lemma 4.1, is because Y has it’s
holonomy as a subgroup of G2, and is not equivalent to G2.

Example 4.2 (7-Torus Orbifold). We saw from Example 2.1 that the 6-Torus is a Calabi-Yau
manifold. We can write the 6-Torus as

T 6 = S1 × ..×S1 (296)

i.e. the product of 6 circles. Thus, when considering Theorem 4.1 we might say that

T 6 ×S1 = S1 × ...×S1 ×S1 = T 7 is a G2-manifold. (297)

However, the torus is not simply connected, and so we cannot say this. To construct a simply-
connected G2-manifold, we can do something similar to what we did in Example 2.3 to make our
T 7 simply-connected. If we let a quotient group act on T 7 and then resolve the singularities as we
did in Subsection 2.4, then we get a simply-connected, smooth G2-manifold [10]. We consider the
T 7 orbifold produced by acting on T 7 with the quotient group Λ = (Z2)

3 given in [10], i.e. we act
with Z2 three times:

(x1, ..,x7)
g1∼ (x1,x2,x3,−x4,−x5,−x6,−x7) (298)

g2∼ (x1,−x2,−x3,x4,x5,
1
2
− x6,−x7) (299)

g3∼ (−x1,x2,−x3,x4,
1
2
− x5,x6,

1
2
− x7) (300)
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where gi ∈ Λ. We can check that these identifications leave ϕ, ⋆ϕ invariant. For example, consider
acting with each gi on the term dx145 of ϕ:

dx145 g1→ dx1 ∧−dx4 ∧−dx5 = dx145 (301)
g2→ dx1 ∧dx4 ∧dx5 = dx145 (302)

g3→−dx1 ∧dx4 ∧d(
1
2
− x5) (303)

=−dx1 ∧dx4 ∧−dx5 = dx145 (304)

so we see that each gi leaves this term invariant. We also have this for all the other terms of ϕ and
⋆ϕ . Note that these specific quotients have been chosen for the particular definition of the 3- and
4-forms ϕ, ⋆ϕ from Definition 4.1. In [19] they choose a different definition, and so the quotients
here are different to the quotients that [19] use for this example. If we used the quotients from [19]
with the definition of the 3- and 4-forms from [10] then we would not get this symmetry. From these
identifications, we can deduce the Betti numbers of our T 7/Λ orbifold by considering which forms
are left invariant by the quotient group, as usual. From [19] we have that no 1-forms or 2-forms
are preserved under gi transformations, but we get 7 preserved 3-forms. These will be each of
the 7 dxi jk terms in ϕ . The 1-forms and 2-forms will vanish as there are no dxi or dxi ∧dx j left
unchanged by all 3 of the Z2 quotients in Λ. For example, the 2-form dx1 ∧dx2 is invariant under
g1,g2, but not g3. Therefore the Betti numbers of our T 7/Λ orbifold are given as

(b0,b1,b2,b3) = (1,0,0,7) (305)

From [10] we know that T 7/Λ has 12 orbifold singularities - we might think that each gi produces
16 singularities and thus Λ produces 48 singularities, but when we act with two or more gi and
utilise the fact that xk ∼ xk +1 by the identifications that define the 7-Torus, we end up seeing that
each gi ends up contributing only 4 singularities each, leaving us 12 in total [19].

To smooth these singularities, we should notice that the singularities mentioned above leave 3
of our coordinates unchanged, i.e., we are left with a T 3 ×Y where Y contains our singularities
[10] [19]. We have that locally around the singularities of Y it looks like R4/Z2 ∼= C2/Z2 [10].
This is because locally the quotient group is Z2, not Λ. Thinking back to Subsection 2.4, we used the
Eguchi-Hanson space EH3 to patch our singularities around a locally R6/Z3 space (in Theorem
2.9). What we can do to smooth our orbifolds now is to use EH2, which locally will look like
R4/Z2 by the same reasoning as in Theorem 2.9. While in Lemma 2.8 we considered specifically
the cohomology of EH3, the cohomology of EH2 takes essentially the exact same form:

1
0 0

0 1 0
0 0
1

 (306)
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i.e., the only harmonic form is the Kähler form defined by the Eguchi-Hanson metric. This can be
seen from the fact that our calculations in Lemma 2.8 did not depend on the dimension of the space,
up to constants. To write our Hodge numbers as Betti numbers for EH2, we have simply

(b0,b1,b2) = (1,0,1) (307)

By replacing the singularities of Y with EH2 as in Theorem 2.9, we will obtain 12 copies of EH2.
This means that we will receive an additional 12 harmonic 2-forms which contributes to b2 of our
final smoothed orbifold. Adding these forms to the cohomology of the T 7/Λ orbifold, we get

(b0,b1,b2,b3) = (1,0,12,7) (308)

for our smoothed T 7/Λ orbifold. We know from [19], [10] that the holonomy of this final manifold
is strictly G2. The proof of this can be found in [10], but requires advanced analysis beyond the
scope of this thesis. Therefore we have found an example of a smooth ’proper’ G2-manifold, i.e. a
manifold with hol(g) = G2.

In general, constructing ’proper’ G2-manifolds is a very difficult problem, and this provides a
significant hurdle for progress in M-theory compactifications.

4.2 M-Theory on G2 Manifolds

Recall Definition 3.2, as this will be the action that we are considering in this chapter. As mentioned,
this is actually the 11D supergravity action, which is a low energy approximation to M-theory.

Corollary 4.2. Consider Theorem 3.2, where we had the 11D supergravity action on M11 =

M10 ×S1. Let
M10 =M4 ×X6 (309)

and then appreciate that this means we have

M11 =M4 ×X6 ×S1 (310)

We can then use Theorem 4.1 to say that

G = X6 ×S1 (311)

is a G2 manifold. This then means that by the reduction from 11D supergravity to the IIA action in
Theorem 3.2 and the reduction from IIA to a 4D theory in Theorem 3.1, we have already managed
to do a dimensional reduction of 11D supergravity on G to a 4D theory without even meaning to!
As G is just a special case of G2 manifold, we have only considered one case of M-theory reduction,
so we would like to consider more general reductions.

This Corollary is an important reason for why we chose to do IIA reductions as opposed to
one of the other 4 string theories. While we could then use other string theory dualities to bridge
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to the other types from this point, this one is a more natural connection between M-theory and
string theory. It also shows us that string theory would not necessarily be the most fundamental
theory, but a limiting case of M-theory. This is not surprising, as we would not have been able
to achieve the standard model’s gauge symmetry from a 10D string theory due to only having 6
dimensions instead of the required 7, as discussed at the beginning of this Section. With this, we
see that IIA reductions are just a special case of M-theory reductions. We will consider the more
general M-theory reduction now.

Theorem 4.2 (M-Theory Reduction on General G2-Manifolds). We begin with the action from
Definition 3.2, with the field content being an 11D metric and a 3-form:

S =
1

2κ2
(11)

∫
M11

R̃⋆1− 1
2

F̃4 ∧⋆F̃4 −
1
6

Ã3 ∧ F̃4 ∧ F̃4 (312)

where F̃4 = dÃ3. We let M11 =M4 ×G where G is a ’proper’ G2-Manifold, i.e. hol(g) = G2 for
our metric on G.

We will follow [11] as a guide here. From Lemma 4.1 we know that the only unique Betti
numbers are b2 and b3, so we can make make the expansion of our 11D 3-form: [11]

Ã3(x,z) = AI(x)∧ωI(z)+ pk(x)αk(z) (313)

where {ωI}b2
I=1 is a basis of H2(G), {αk}b3

k=1 is a basis of H3(G), AI are 1-forms on M4, and pk are
scalars on M4.

We also know from [16] that the 11D metric will be expanded into a 4D metric and b3 scalar
fields. This is because we can split the 11D metric into a 4D metric and fill the remaining rows and
columns with Skαk. Thus, similar to Theorem 3.1, we get

R̃ ⋆11 1 = R ⋆10 ∧⋆1 1+d4Sk ∧αk ∧⋆11d4SL ∧αL (314)

where Sk are b3 scalar fields on M4, using notation of these scalars from [11]. We can begin our
expansion one term at a time, beginning with the field-strength term of Ã3:∫

M4×G
F̃4 ∧⋆11F̃4 =∫

M4×G
{(d4AI ∧ωI +d4 pk ∧αk)∧⋆11(d4AJ ∧ωJ +d4 pl ∧αl)} (315)

=
∫
M4×G

{d4AI ∧ωI ∧⋆4d4AJ ∧⋆7ωJ +d4 pk ∧αk ∧⋆4d4 pl ∧⋆7αl (316)

+d4AI ∧ωI ∧⋆4d4 pl ∧⋆7αl +d4 pk ∧αk ∧⋆4d4AJ ∧⋆7ωJ}

=
∫
M4

−GIJdAI ∧⋆dAJ −Hkld pk ∧⋆d pl (317)

where the underlined terms in Equation (316) vanish due to having a 5-form on a 4D space and an
8-form on a 7D space respectively. Here,

GIJ =
∫

G
ωI ∧⋆7ωJ, Hkl =

∫
G

αk ∧⋆7αl (318)
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The Chern-Simons term here is smaller than the one in Theorem 3.1, but we’ll still use the same
approach as last time here. However, we won’t go into much detail - of 8 terms we have 3 survive
due to having the correct dimensions. However, two of these cancel each other out due to being
odd permutations of one another. Therefore, using our expansion of Ã3, we get:∫

M4×G
(AI ∧ωI + pk

αk)∧ (dAJ ∧ωJ +d pl ∧αl)∧ (dAK ∧ωK +d pm ∧αm)

=
∫
M4

κIJk pkdAI ∧dAJ (319)

where κIJk =
∫

G ωI ∧ωJ ∧αk are the intersection numbers.
Finally, then, we get our 4D action:

S4 =
1

2κ2
(4)

∫
M4

{R ⋆1+
1
2

GIJdAI ∧⋆dAJ (320)

+
Hkl

2
(d pk ∧⋆d pl +2dSk ∧⋆dSl)− κIJk

6
pkdAI ∧dAJ}

which thankfully matches the result in [11]. Our field content is then given by:

• 4D Ricci scalar: R

• b2 1-forms: AI

• 2b3 scalars: pk,Sk

To achieve the correct content of the standard model we require the Betti numbers to match the
correct number of each field in the standard model, as well as for these scalars and forms to
transform correctly under various symmetries and mechanisms.

Now that we’ve seen the dimensional reduction of M-theory, we can begin to consider some
example manifolds. As mentioned in the previous subsection, having hol(g) = G2 is the assumption
we make in our reduction, so the example we gave with this condition will be preferred. We can
still see what the example with hol(g)⊂ G2 would give us though:

Example 4.3 ((T 6/Z3)×S1 Reduction). Now that we’ve seen a reduction on a general G2-manifold
G. e can consider the examples that we constructed. We can use the manifold from Example 4.1 as
our manifold G, where we have

b2 = 36, b3 = 38 (321)

such that the field content we get is

• 4D Ricci scalar: R

• 36 1-forms: AI

• 76 scalars: pk,Sk
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However we might not be able to fully trust this reduction, as we haven’t taken into account the fact
that we also have b1 = 1, which could have appeared in our general reduction at some point.

Example 4.4 (T 7 Orbifold Reduction). Now let G be the manifold in Example 4.2, which had
hol(g) = G2. The unique non-trivial Betti numbers of this orbifold were

b2 = 12, b3 = 7 (322)

so our resulting field content is then given by:

• 4D Ricci scalar: R

• 12 1-forms: AI

• 14 scalars: pk,Sk

As discussed, the fact that this manifold has strictly G2 holonomy means it is more true to our
assumptions in the reduction. What’s interesting about this example is that the standard model has
12 gauge bosons, which can be written as 1-forms. Therefore, the reduction on this manifold gives
us the correct number of 1-forms that we would expect to see in the standard model. The number of
scalar fields is still too low however.

Now that we’ve seen a very promising potential unification of gravity with the standard model,
we would like to check that this reduction is consistent. When we reduced IIA, we did not check for
consistency as it did not resemble the standard model and so we were not worried about whether
it could be perceived as a reliable physical theory. We will show the consistency of M-theory
reductions now:

Theorem 4.3 (Consistency of M-Theory Reduction). As mentioned after Theorem 3.1, we need
to check that the 11D equations of motion and the 4D equations of motion are consistent. We
can do this by finding the equations of motion in 11D and 4D respectively, and then showing that
substituting the 4D equations into the 11D satisfy the 11D equation.

For the higher-dimensional action, given in Definition 3.2, we can vary in Ã3:

δAS =
∫
{−1

2
d(δ Ã3)∧⋆dÃ3 −

1
2

dÃ3 ∧⋆d(δ Ã3) (323)

− 1
6
(δ Ã3 ∧dÃ3 ∧dÃ3 + Ã3 ∧d(δ Ã3)∧dÃ3 + Ã3 ∧dÃ3 ∧d(δ Ã3))}

=
∫
{δ Ã3 ∧d ⋆dÃ3 +

1
6

δ Ã3 ∧dÃ3 ∧dÃ3} (324)

=
∫

δ Ã3 ∧ (d ⋆dÃ3 +
1
6

dÃ3 ∧dÃ3) (325)

⇒ d ⋆dÃ3 +
1
6

dÃ3 ∧dÃ3 = 0 (326)
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where we have obtained the equation of motion of Ã3 in Equation (326). In Equation (324) we
used Theorem 1.4 to rearrange the derivatives on the first two terms of the previous line, and saw
that the final two terms of Equation (326) cancel each other our by permuting the wedge products.
While strange at first, we will see that writing the equation of motion in the following form will
assist us in proving the consistency of our reduction:

[d ⋆dÃ3 +
1
6

dÃ3 ∧dÃ3]∧ωK ∧αm = 0 (327)

For the reduction in Theorem 4.2 to be consistent, we require that the equations of motions obtained
from the 4D action satisfy this equation of motion when the expansion is made. To do this, we
consider the equations of motion for AI, pk in the 4D action by first varying AI:

δAS4 =
∫

−GIJd(δAI)∧⋆dAJ − κIJk

3
pkd(δAI)∧dAJ (328)

=
∫

GIJδAI ∧d ⋆dAJ +
κIJk

3
d pk ∧δAI ∧dAJ (329)

=
∫

δAI ∧ (GIJd ⋆dAJ − κIJk

3
d pk ∧dAJ) (330)

⇒ GIJd ⋆dAJ − κIJk

3
d pk ∧dAJ = 0 (331)

where Equation (331) gives the first equation8 of motion in AI, pk. Again, to write this equation in
a peculiar way to assist us later:

ωI ∧⋆7ωJ ∧ (d ⋆dAJ)− 1
3

ωI ∧ωJ ∧αk ∧ (d pk ∧dAJ) = 0 (332)

We can now vary the action by pk:

δpS4 =
∫

Hkld(δ pk)∧⋆d pl − κIJk

6
δ pkdAI ∧dAJ (333)

=
∫

−δ pk ∧ (Hkld ⋆d pl +
κIJk

6
dAI ∧dAJ) (334)

⇒ Hkld ⋆d pl +
κIJk

6
dAI ∧dAJ = 0 (335)

where Equation (335) gives us the second equation of motion. A final strange rewriting of these
equations of motion is required:

αk ∧⋆7αl ∧ (d ⋆d pl)+
1
6

ωI ∧ωJ ∧αk ∧ (dAI ∧dAJ) = 0 (336)

What we want to do now is to substitute our expansion of Ã3 from Equation (313) into Equation
(327) and then use Equations (332) and (336) to show that the 11D equations of motion are

8Technically there are b2 equations of motion here

52



satisfied:

[d ⋆d(AI ∧ωI + pk
αk)+

1
6

d(AI ∧ωI + pk
αk)∧d(AJ ∧ωJ + pl ∧αl)]∧ωK ∧αm

= [(d ⋆4 dAI)∧⋆7ωI − (d ⋆4 d pk)∧⋆7αk +
1
6

dAI ∧dAJ ∧ωI ∧ωJ (337)

+
1
3

dAI ∧d pl ∧ωI ∧αl −
1
6

d pk ∧d pl ∧αk ∧αl]∧ωK ∧αm

= (d ⋆4 dAI)∧⋆7ωI ∧ωK ∧αm − (d ⋆4 d pk)∧⋆7αk ∧αm ∧ωK

− 1
6

dAI ∧dAJ ∧ωI ∧ωJ ∧αm ∧ωK − 1
3

d pk ∧dAI ∧ωI ∧ωK ∧αk ∧αm (338)

− 1
6

d pk ∧d pl ∧αk ∧αl ∧αm ∧ωK

= [ωK ∧⋆7ωI ∧ (d ⋆4 dAI)− 1
3

ωI ∧ωK ∧αk ∧d pk ∧dAI]∧αm (339)

− [αm ∧⋆7αk ∧ (d ⋆4 d pk)+
1
6

ωI ∧ωJ ∧αm ∧ (dAI ∧dAJ)]∧ωK = 0

where we see that the equations of motion (332) and (336) in 4D now satisfy the 11D equation of
motion. In the final term of Equation (338) we used the fact that the wedge of the three 3-forms
will vanish due to being a 9-form of a 7D manifold. Therefore, the action for AI, pk is consistent.
We will not consider the consistency of the Ricci scalar reduction as it would be longer and more
complicated than what we have just done.

Theorem 4.4 (Gauge Symmetry of M-theory Reduction). The gauge symmetry obtained from the
reduction of M-theory on a G2-manifold contains the gauge symmetry of the standard model:

SU(3)×SU(2)×U(1)⊂ G2 ×G2 (340)

where G2 ×G2 is the resulting gauge symmetry we obtain from our reduction in Theorem 4.2.
Proof: We have our 11D manifold as M4 ×G, where G is a non-abelian Lie group G2. [22]

says that in the case of a reduction on M4 ×G, where G is a non-abelian lie group, the resulting
gauge symmetry group is G×G. So, in our case we have a resulting G2 ×G2 symmetry group.
From [10] we know that

SU(3)⊂ G2 (341)

which means that our resulting gauge symmetry has

SU(3)×SU(3)⊂ G2 ×G2 (342)

From [1] we know that
SU(2)×U(1)⊂ SU(3) (343)

which means finally that our gauge symmetry group G2 ×G2 contains the gauge symmetry group
of the standard model:

SU(3)×SU(2)×U(1)⊂ G2 ×G2 (344)
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This section has shown a very promising attempt to unify gravity with the standard model:
We have a gauge symmetry containing the standard model’s gauge symmetry group, as well as
predicting scalar fields and 1-forms (which can be viewed as vector bosons), all while having a
term in the action corresponding to the Einstein-Hilbert action in 4D. Our only remaining issue is
that the exact number of scalar fields and 1-forms that have been predicted depends on the chosen
G2-manifold, of which there could potentially be infinitely many to choose from9. There also exists
the issue of not knowing what the fields in our reduction correspond to in the standard model, as
the field content in our 4D theory is bosonic, whereas the standard model contains both bosonic
and fermionic fields. We will address this in our conclusions.

9The number of existing G2-manifolds is unknown.
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5 Conclusions

We began this thesis by considering an important motivating example for unified theories, namely
Kaluza-Klein theory. This theory gave us a unification of gravity and electromagnetism from just
one extra dimension, and so we set out to consider theories of even greater dimension that could
give us something close to a unification of gravity with the standard model. Before jumping right
into physical theories, we delved into some geometry that could help us describe more interesting
extra dimensions. The required extra dimensions for a 10D string theory, Calabi-Yau manifolds,
were covered in great depth and we gave some insightful examples with a particular focus on
orbifold constructions. An important aspect of our examples were the Betti numbers or Hodge
numbers of the manifold. One of the most interesting parts of this thesis has been realising that these
seemingly simple topological numbers end up playing a crucial role in the dimensional reductions
of our theories - they tell us how many fields our 4D theory will have. When we reduced Type IIA
string theory we obtained a 4D theory with a diverse and plentiful array of fields, but this didn’t
really look like the standard model.

Here, we chose to move to M-theory reductions, as this is the minimal dimension that we can
have the gauge symmetry of the standard model, as well as being the maximum dimension possible
for supergravity theories [22]. First we discussed the required extra 7 dimensional manifolds for
M-theory, G2-manifolds. We gave more orbifold constructions and found their Betti numbers, and
then used these as our extra dimensions for M-theory. We performed the dimensional reduction
of M-theory and saw something incredible - we obtain a theory in 4D that has a number of scalar
fields and vector fields (1-forms) which contain the standard model’s gauge symmetry group as a
subgroup of their gauge symmetry. This was personally a great surprise for the author, who did not
expect to see such a promising result from the dimensional reduction.

Something to take into consideration is the fact that there is a considerably large and potentially
infinite number of manifolds to represent the extra dimensions of our string theory and M-theory
reductions. The standard model will have a given number of scalar and vector fields and so we
need to choose the Hodge numbers or Betti numbers to match this number. This leads us to The
Swampland. Every distinct manifold that we choose to represent the extra dimensions of our theory
will produce a different 4D theory because of the different Betti numbers or Hodge numbers of the
manifold, most of which will be ’false vacua’, i.e. theories that don’t describe the universe we live
in [21].

While the results seem incredibly promising as a potential unification of gravity with the
standard model, it must be pointed out that these fields come from the bosonic section of the
supergravity action in 11D. This means that the action is supersymmetric [17], while the standard
model is not. Thus, we are not quite at our final unified theory yet. It occurs to the author that
an interesting future area of study could be supersymmetric extensions of the standard model in
an attempt to try and connect it to the dimensional reduction of M-theory. Alternatively, perhaps
this route ceases to be anything more than a pleasing mathematical coincidence without a way of
connecting it to a realistic physical theory.
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A Homology

For our discussion of Homology, we shall follow the arguments of [5] more so than [14]. This is
because [14] approaches the topic from the viewpoint of simplicial complexes, whereas [5] takes a
sub-manifold approach which aligns more with this project. The reason I have chosen to discuss
homology is because of it’s relationship to cohomology, and helps us understand the physical
meaning of cohomology for a manifold.

Before we describe what Homology is, we need to introduce the concept of chains and cycles.
We borrow these definitions directly from [5].

Definition A.1 (Chains). A p-chain cp of manifold M is defined as

cp = ΣaiNi (345)

where ai is just a constant (can be integer, real, complex) and Ni is a p-dimensional oriented
submanifold of M. [5]

This is then just a collection of submanifolds with a constant assigned to each. To define a
cycle, we need to remember that ∂N means the boundary of a manifold N, and that ∂ 2N = 0, i.e.
the boundary of a boundary is empty. A good example of this fact is that the boundary of a disc is a
circle, and a circle has no boundary [5].

Note that ∂ is linear, so if we try to take the boundary of a p-chain cp, we can just write it as the
sum of the boundaries of the submanifolds:

∂cp = Σai∂Ni (346)

where ∂cp is thus a (p-1)-chain [5] (think about the example of a disc: a disc is a 2-chain, and it’s
boundary is a circle, a 1-chain, so the boundary operator takes us down a dimension.)

Definition A.2 (Cycles). A p-cycle is a p-chain cp such that ∂cp = 0 [5]. That is, a p-chain where
every submanifold Ni in the chain has no boundary.

Now something we would like to consider are cycles that are also not boundaries. Obviously we
can have a chain with ∂cp = 0 by simply choosing that each Ni = ∂Mi i.e. that each submanifold is
the boundary of some other submanifold. This is similar to how every exact differential form is
closed. This would give us:

∂cp = Σai∂∂Mi = 0 (347)

but this is a rather trivial case.
The Homology Group is what we would like to consider - the set of cycles that are without

boundary but are not boundaries.

Definition A.3 (Homology). Let Cp = {cp | cp is a p-cycle on M} be the set of p-cycles on M and
Bp = {bp|bp = ∂ap+1} be the set of p-chains that are boundaries of a (p+1)-chain such that for
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bp ∈ Bp we have ∂bp = ∂∂ap+1 = 0, i.e. bp is a trivial p-cycle. We then define the Homology of M
to be

Hp = Cp/Bp (348)

which is just the quotient of the two aforementioned sets [5]. This gives us the set of non-trivial
p-cycles. For any two cycles that differ by a boundary, we identify them, i.e. [5]

cp ∼ cp +∂ap+1 (349)

We also have an important relationship between homology and de Rham cohomology, given by
the following theorem:

Theorem A.1 (Equivalence of homology and de Rham cohomology). Let Hp be the homology of
M and Hp be the de Rham cohomology of M. Then we have that these spaces are dual to each other
and are thus isomorphic [5]:

Hp ∼=Hp (350)

Corollary A.1. Let us have a manifold M with a given homology and cohomology, Hp and Hp.
Then due to Theorem A.1 we have that

dimHp = dimHp (351)

This tells us that a harmonic form corresponds to a submanifold of M without boundary that is not
itself a boundary.

B Additional Kaluza-Klein Examples

As well as the original Kaluza-Klein example of unifying gravity and electromagnetism, we can
use the same concept for other theories. Going from a simpler theory in a higher dimension
and eliminating the extra dimension via integration and Fourier expansions can give us a more
complicated theory in a lower dimension. The following examples both show this. We can follow
[18] for our inspiration for this Appendix.

Example B.1 (Klein-Gordon Equation). Let us pick a Lagrangian that gives us the Klein-Gordon
equations of motion

L = ∂I φ̄∂
I
φ +m2|φ |2 (352)

where I ∈ {0, ..,3,4} such that I = 4 corresponds to a coordinate on S1. That is, we have action

S =
∫
M4×S1

d4xdy[∂I φ̄∂
I
φ +m2|φ |2] (353)

where y is the coordinate on S1. What we can do is split the Lagrangian up into a part over M4

and a part over S1 and then use a Fourier expansion like in Definition 1.2:

S =
∫
M4×S1

d4xdy[∂µ φ̄∂
µ

φ +∂4φ̄∂
4
φ +m2|φ |2] (354)
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φ(x,y) =
∞

∑
n=−∞

φn(x)einy/R (355)

where R is the radius of the S1. Substituting Equation (355) into (354) gives us:

S =
∫
M4×S1

d4xdy[∂µ(∑
n

φ̄ne−iny/R)(∂ µ
∑
m

φmeimy/R) (356)

+∂4(∑
n

φ̄ne−iny/R)(∂ 4
∑
m

φmeimy/R)

+m2(∑
n

φ̄ne−iny/R)(∑
m

φmeimy/R)]

=
∫
M4×S1

d4xdy[(∑
n
(∂µ φ̄n)e−iny/R)(∑

m
(∂ µ

φm)eimy/R) (357)

+(∑
n

φ̄n(∂4e−iny/R))(∑
m

φm(∂
4eimy/R))

+m2(∑
n,m

φ̄nφme−iny/Reimy/R)]

=
∫
M4

d4x
∫ 2πR

0
ei(m−n)y/Rdy[(∑

n,m
(∂µ φ̄n)(∂

µ
φm)) (358)

+(∑
n,m

− in
R

φ̄n(
im
R

φm))

+m2(∑
n,m

φ̄nφm)]

= 2πR
∫
M4

d4x[(∑
n
(∂µ φ̄n)(∂

µ
φn)) (359)

+(∑
n

n2

R2 |φn|2)

+m2(∑
n
|φn|2)]

where we used the identity
∫ a

0 ei(n−m)xdx = aδ nm to get from Equation (358) to (359). So finally
we end up with:

S =
∫
M4

d4x[∂µ φ̄0∂
µ

φ0 +m2|φ0|2 + ∑
n̸=0

(∂µ φ̄n∂
µ

φn +(
n2

R2 +m2)|φn|2)] (360)

which is a massive complex scalar field of mass m2 and a tower of massive complex scalar
fields of mass n2

R2 +m2. The fact that n is an integer means that from using this Kaluza-Klein
compactification we have obtained a massive scalar field and a tower of massive scalar fields of
quantized mass.
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So from this example we’ve seen that Kaluza-Klein theory not only helps us unify forces as in
Subsection 1.1, but also enables us to achieve a quantized theory from a classical theory in higher
dimensions. Not only can we do this for a scalar field, but we can do this for a vector field as well,
which we’ll see in the next example.

Example B.2 (Compactifying vector fields). Now we let our Lagrangian be

L =−1
4

FIJF IJ (361)

where FIJ = ∂IAJ −∂JAI , again with I,J ∈ {0, ...3,4} where the fourth coordinate is over S1. This
is just the Lagrangian of a massless vector field. Therefore our action is defined as

S =
∫
M4×S1

d4xdy[−1
4

FIJF IJ] (362)

=
∫
M4×S1

d4xdy[−1
4

FµνFµν − 1
2

Fµ4Fµ4] (363)

where the second term has been multiplied by a factor of two as there are two copies of Fµ4Fµ4

due to symmetry. The next step is to use the expansion

AI =
∞

∑
n=−∞

A(n)
I einy/R (364)

with the same expansion for AI . Additionally, as a vector field can be seen as just a collection of
scalar fields, we can relabel A5 = A5 = φ .

We first need to expand the terms into terms of AI before substituting in these expansions, so the
first term becomes

FµνFµν = (∂µAν −∂νAµ)(∂
µAν −∂

νAµ) (365)

= 2∂µAν∂
µAν −2∂µAν∂

νAµ (366)

= 2∂µ(∑
n

A(n)
ν einy/R)∂ µ(∑

m
Aν

(m)e
imy/R)−2∂µ(∑

n
A(n)

ν einy/R)∂ ν(∑
m

Aµ

(m)e
imy/R) (367)

= ei(n+m)y/R
∑
n,m

[2∂µA(n)
ν ∂

µAν

(m)−2∂µA(n)
ν ∂

νAµ

(m)] (368)

= ei(n+m)y/R
∑
n,m

F(n)
µν Fµν

(m) (369)

iv



and the second term becomes

Fµ4Fµ4 = (∂µA4 −∂4Aµ)(∂
µA4 −∂

4Aµ) (370)

= ∂µφ∂
µ

φ +∂4Aµ∂
4Aµ −∂4Aµ∂

µ
φ −∂µφ∂

4Aµ (371)

= ∂µ ∑
n
(φneiny/R)∂ µ

∑
m
(φmeimy/R)+∂4 ∑

n
(A(n)

µ einy/R)∂ 4
∑
m
(Aµ

(m)e
imy/R) (372)

−∂4 ∑
n
(A(n)

µ einy/R)∂ µ
∑
m
(φmeimy/R)−∂µ ∑

n
(φneiny/R)∂ 4

∑
m
(Aµ

(m)e
imy/R)

= ei(n+m)y/R
∑
n,m

[∂µφn∂
µ

φm +
i2nm
R2 A(n)

µ Aµ

(m)−
in
R

A(n)
µ ∂

µ
φm − im

R
Aµ

(m)∂µφn] (373)

So if we then integrate the exponential terms over the S1, we get that m =−n and we multiply by
2πR, which gives the effective 4D action as

S = 2πR
∫
M4

d4x− 1
2 ∑

n
[
1
2

F(n)
µν Fµν

(−n)+∂µφn∂
µ

φ(−n) (374)

+
n2

R2 A(n)
µ Aµ

(−n)+
in
R
(Aµ

(−n)∂µφn −A(n)
µ ∂

µ
φ(−n))]

which we can see gives us a massless vector field and a massless scalar field (by letting n=0) as
well as a tower of massive vector fields with mass n2

R2 and some couplings between the vector and
scalar fields. To remove this term, we can fix the gauge

Aµ → Aµ +∂µα (375)

by letting

α =− iR
n

φn =
iR
n

φ(−n) (376)

which results in the action

S = 2πR
∫
M4

d4x− 1
2 ∑

n
[
1
2

F(n)
µν Fµν

(−n)+∂µφ0∂
µ

φ0 +
n2

R2 A(n)
µ Aµ

(−n)] (377)

We won’t show that this gauge fixing removes the additional term, as it’s a rather lengthy and
tedious calculation. Therefore, by fixing this gauge we began with a 5D massless vector field and
have obtained a massless vector field, a massless scalar field, and a tower of massive vector fields.

It is worth noting that while these are some fun toy examples of what can be done with Kaluza-
Klein theory, they are not consistent reductions [18]. Therefore they cannot be considered as
realistic physical theories, but are just interesting mathematical results.
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